Download or read book Multivariate Spline Functions and Their Applications written by Ren-Hong Wang and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the algebraic geometric method of studying multivariate splines. Topics treated include: the theory of multivariate spline spaces, higher-dimensional splines, rational splines, piecewise algebraic variety (including piecewise algebraic curves and surfaces) and applications in the finite element method and computer-aided geometric design. Many new results are given. Audience: This volume will be of interest to researchers and graduate students whose work involves approximations and expansions, numerical analysis, computational geometry, image processing and CAD/CAM.
Download or read book Spline Functions and Multivariate Interpolations written by Borislav D. Bojanov and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spline functions entered Approximation Theory as solutions of natural extremal problems. A typical example is the problem of drawing a function curve through given n + k points that has a minimal norm of its k-th derivative. Isolated facts about the functions, now called splines, can be found in the papers of L. Euler, A. Lebesgue, G. Birkhoff, J. Favard, L. Tschakaloff. However, the Theory of Spline Functions has developed in the last 30 years by the effort of dozens of mathematicians. Recent fundamental results on multivariate polynomial interpolation and multivari ate splines have initiated a new wave of theoretical investigations and variety of applications. The purpose of this book is to introduce the reader to the theory of spline functions. The emphasis is given to some new developments, such as the general Birkoff's type interpolation, the extremal properties of the splines and their prominant role in the optimal recovery of functions, multivariate interpolation by polynomials and splines. The material presented is based on the lectures of the authors, given to the students at the University of Sofia and Yerevan University during the last 10 years. Some more elementary results are left as excercises and detailed hints are given.
Download or read book Multivariate Spline Functions and Their Applications written by Renhong Wang and published by . This book was released on 2001 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Spline Functions on Triangulations written by Ming-Jun Lai and published by Cambridge University Press. This book was released on 2007-04-19 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive graduate text offering a detailed mathematical treatment of polynomial splines on triangulations.
Download or read book Spline Functions written by Larry L. Schumaker and published by SIAM. This book was released on 2015-01-01 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes in detail the key algorithms needed for computing with spline functions and illustrates their use in solving several basic problems in numerical analysis, including function approximation, numerical quadrature, data fitting, and the numerical solution of PDE's. The focus is on computational methods for bivariate splines on triangulations in the plane and on the sphere, although both univariate and tensor-product splines are also discussed. The book contains numerous examples and figures to illustrate the methods and their performance. All of the algorithms in the book have been coded in a separate MATLAB package available for license. The package can be used to run all of the examples in the book and also provides readers with the essential tools needed to create software for their own applications. In addition to the included bibliography, a list of over 100 pages of additional references can be found on the book's website.
Download or read book Multivariate Polysplines written by Ognyan Kounchev and published by Academic Press. This book was released on 2001-06-11 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multivariate polysplines are a new mathematical technique that has arisen from a synthesis of approximation theory and the theory of partial differential equations. It is an invaluable means to interpolate practical data with smooth functions. Multivariate polysplines have applications in the design of surfaces and "smoothing" that are essential in computer aided geometric design (CAGD and CAD/CAM systems), geophysics, magnetism, geodesy, geography, wavelet analysis and signal and image processing. In many cases involving practical data in these areas, polysplines are proving more effective than well-established methods, such as kKriging, radial basis functions, thin plate splines and minimum curvature. - Part 1 assumes no special knowledge of partial differential equations and is intended as a graduate level introduction to the topic - Part 2 develops the theory of cardinal Polysplines, which is a natural generalization of Schoenberg's beautiful one-dimensional theory of cardinal splines - Part 3 constructs a wavelet analysis using cardinal Polysplines. The results parallel those found by Chui for the one-dimensional case - Part 4 considers the ultimate generalization of Polysplines - on manifolds, for a wide class of higher-order elliptic operators and satisfying a Holladay variational property
Download or read book Handbook of Splines written by Gheorghe Micula and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to give a comprehensive introduction to the theory of spline functions, together with some applications to various fields, emphasizing the significance of the relationship between the general theory and its applications. At the same time, the goal of the book is also to provide new ma terial on spline function theory, as well as a fresh look at old results, being written for people interested in research, as well as for those who are interested in applications. The theory of spline functions and their applications is a relatively recent field of applied mathematics. In the last 50 years, spline function theory has undergone a won derful development with many new directions appearing during this time. This book has its origins in the wish to adequately describe this development from the notion of 'spline' introduced by 1. J. Schoenberg (1901-1990) in 1946, to the newest recent theories of 'spline wavelets' or 'spline fractals'. Isolated facts about the functions now called 'splines' can be found in the papers of L. Euler, A. Lebesgue, G. Birkhoff, J.
Download or read book Advanced Topics In Multivariate Approximation Proceedings Of The International Workshop written by Fontanella F and published by World Scientific. This book was released on 1996-11-13 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of 24 refereed carefully edited papers on various topics in multivariate approximation. It represents the proceedings of a workshop organized by the University of Firenze, and held in September 1995 in Montecatini, Italy.The main themes of the volume are multiresolution analysis and wavelets, multidimensional interpolation and smoothing, and computer-aided geometric design. A number of particular topics are included, like subdivision algorithms, constrained approximation and shape-preserving algorithms, thin plate splines, radial basis functions, treatment of scattered data, rational surfaces and offsets, blossoming, grid generation, surface reconstruction, algebraic curves and surfaces, and neural networks.
Download or read book Fifth International Congress of Chinese Mathematicians written by Lizhen Ji and published by American Mathematical Soc.. This book was released on 2012 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-part volume represents the proceedings of the Fifth International Congress of Chinese Mathematicians, held at Tsinghua University, Beijing, in December 2010. The Congress brought together eminent Chinese and overseas mathematicians to discuss the latest developments in pure and applied mathematics. Included are 60 papers based on lectures given at the conference.
Download or read book Mathematical Objects in C written by Yair Shapira and published by CRC Press. This book was released on 2009-06-19 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing the connection between mathematical objects and their practical C++ implementation, this book provides a comprehensive introduction to both the theory behind the objects and the C and C++ programming. Object-oriented implementation of three-dimensional meshes facilitates understanding of their mathematical nature. Requiring no prerequisites, the text covers discrete mathematics, data structures, and computational physics, including high-order discretization of nonlinear equations. Exercises and solutions make the book suitable for classroom use and a supporting website supplies downloadable code.
Download or read book Linear Algebra and Group Theory for Physicists and Engineers written by Yair Shapira and published by Springer Nature. This book was released on 2023-01-16 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook demonstrates the strong interconnections between linear algebra and group theory by presenting them simultaneously, a pedagogical strategy ideal for an interdisciplinary audience. Being approached together at the same time, these two topics complete one another, allowing students to attain a deeper understanding of both subjects. The opening chapters introduce linear algebra with applications to mechanics and statistics, followed by group theory with applications to projective geometry. Then, high-order finite elements are presented to design a regular mesh and assemble the stiffness and mass matrices in advanced applications in quantum chemistry and general relativity. This text is ideal for undergraduates majoring in engineering, physics, chemistry, computer science, or applied mathematics. It is mostly self-contained—readers should only be familiar with elementary calculus. There are numerous exercises, with hints or full solutions provided. A series of roadmaps are also provided to help instructors choose the optimal teaching approach for their discipline. The second edition has been revised and updated throughout and includes new material on the Jordan form, the Hermitian matrix and its eigenbasis, and applications in numerical relativity and electromagnetics.
Download or read book Approximation Theory XVI written by Gregory E. Fasshauer and published by Springer Nature. This book was released on 2021-01-04 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings are based on the international conference Approximation Theory XVI held on May 19–22, 2019 in Nashville, Tennessee. The conference was the sixteenth in a series of meetings in Approximation Theory held at various locations in the United States. Over 130 mathematicians from 20 countries attended. The book contains two longer survey papers on nonstationary subdivision and Prony’s method, along with 11 research papers on a variety of topics in approximation theory, including Balian-Low theorems, butterfly spline interpolation, cubature rules, Hankel and Toeplitz matrices, phase retrieval, positive definite kernels, quasi-interpolation operators, stochastic collocation, the gradient conjecture, time-variant systems, and trivariate finite elements. The book should be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.
Download or read book Spline Models for Observational Data written by Grace Wahba and published by SIAM. This book was released on 1990-09-01 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves well as an introduction into the more theoretical aspects of the use of spline models. It develops a theory and practice for the estimation of functions from noisy data on functionals. The simplest example is the estimation of a smooth curve, given noisy observations on a finite number of its values. Convergence properties, data based smoothing parameter selection, confidence intervals, and numerical methods are established which are appropriate to a number of problems within this framework. Methods for including side conditions and other prior information in solving ill posed inverse problems are provided. Data which involves samples of random variables with Gaussian, Poisson, binomial, and other distributions are treated in a unified optimization context. Experimental design questions, i.e., which functionals should be observed, are studied in a general context. Extensions to distributed parameter system identification problems are made by considering implicitly defined functionals.
Download or read book Spline Functions and the Theory of Wavelets written by Serge Dubuc and published by American Mathematical Soc.. This book was released on 1999-01-01 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is based on a series of thematic workshops on the theory of wavelets and the theory of splines. Important applications are included. The volume is divided into four parts: Spline Functions, Theory of Wavelets, Wavelets in Physics, and Splines and Wavelets in Statistics. Part one presents the broad spectrum of current research in the theory and applications of spline functions. Theory ranges from classical univariate spline approximation to an abstract framework for multivariate spline interpolation. Applications include scattered-data interpolation, differential equations and various techniques in CAGD. Part two considers two developments in subdivision schemes; one for uniform regularity and the other for irregular situations. The latter includes construction of multidimensional wavelet bases and determination of bases with a given time frequency localization. In part three, the multifractal formalism is extended to fractal functions involving oscillating singularites. There is a review of a method of quantization of classical systems based on the theory of coherent states. Wavelets are applied in the domains of atomic, molecular and condensed-matter physics. In part four, ways in which wavelets can be used to solve important function estimation problems in statistics are shown. Different wavelet estimators are proposed in the following distinct cases: functions with discontinuities, errors that are no longer Gaussian, wavelet estimation with robustness, and error distribution that is no longer stationary. Some of the contributions in this volume are current research results not previously available in monograph form. The volume features many applications and interesting new theoretical developments. Readers will find powerful methods for studying irregularities in mathematics, physics, and statistics.
Download or read book Computational Geometry written by Renhong Wang and published by American Mathematical Soc.. This book was released on 2003 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational geometry is a borderline subject related to pure and applied mathematics, computer science, and engineering. The book contains articles on various topics in computational geometry based on invited lectures and contributed papers presented during the program on computational geometry at the Morningside Center of Mathematics at the Chinese Academy of Sciences (Beijing). The opening article by R.-H. Wang gives a nice survey of various aspects of computational geometry, many of which are discussed in detail in the volume. Topics of the other articles include problems of optimal triangulation, splines, data interpolation, problems of curve and surface design, problems of shape control, quantum teleportation, and more. The book is suitable for graduate students and researchers interested in computational geometry and specialists in theoretical computer science.
Download or read book Approximation and Modeling with B Splines written by Klaus Hollig and published by SIAM. This book was released on 2015-07-01 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: B-splines are fundamental to approximation and data fitting, geometric modeling, automated manufacturing, computer graphics, and numerical simulation. With an emphasis on key results and methods that are most widely used in practice, this textbook provides a unified introduction to the basic components of B-spline theory: approximation methods (mathematics), modeling techniques (engineering), and geometric algorithms (computer science). A supplemental Web site will provide a collection of problems, some with solutions, slides for use in lectures, and programs with demos.
Download or read book Multivariate Splines written by Charles K. Chui and published by SIAM. This book was released on 1988-01-01 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of multivariate splines has become a rapidly growing field of mathematical research. The author presents the subject from an elementary point of view that parallels the theory and development of univariate spline analysis. To compensate for the missing proofs and details, an extensive bibliography has been included. There is a presentation of open problems with an emphasis on the theory and applications to computer-aided design, data analysis, and surface fitting. Applied mathematicians and engineers working in the areas of curve fitting, finite element methods, computer-aided geometric design, signal processing, mathematical modelling, computer-aided design, computer-aided manufacturing, and circuits and systems will find this monograph essential to their research.