Download or read book Multivariate Calculation written by R.H. Farrell and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Like some of my colleagues, in my earlier years I found the multivariate Jacobian calculations horrible and unbelievable. As I listened and read during the years 1956 to 1974 I continually saw alternatives to the Jacobian and variable change method of computing probability density functions. Further, it was made clear by the work of A. T. James that computation of the density functions of the sets of roots of determinental equations required a method other than Jacobian calculations and that the densities could be calculated using differential forms on manifolds. It had become clear from the work ofC S. Herz and A. T. James that the expression of the noncentral multivariate density functions required integration with respect to Haar measures on locally compact groups. Material on manifolds and locally compact groups had not yet reached the pages of multivariate books of the time and also much material about multivariate computations existed only in the journal literature or in unpublished sets oflecture notes. In spirit, being more a mathematician than a statistician, the urge to write a book giving an integrated treatment of these topics found expression in 1974-1975 when I took a one year medical leave of absence from Cornell University. During this period I wrote Techniques of Multivariate Calculation. Writing a coherent treatment of the various methods made obvious re quired background material.
Download or read book Computation of Multivariate Normal and t Probabilities written by Alan Genz and published by Springer Science & Business Media. This book was released on 2009-07-09 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multivariate normal and t probabilities are needed for statistical inference in many applications. Modern statistical computation packages provide functions for the computation of these probabilities for problems with one or two variables. This book describes recently developed methods for accurate and efficient computation of the required probability values for problems with two or more variables. The book discusses methods for specialized problems as well as methods for general problems. The book includes examples that illustrate the probability computations for a variety of applications.
Download or read book An Introduction to Applied Multivariate Analysis with R written by Brian Everitt and published by Springer Science & Business Media. This book was released on 2011-04-23 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.
Download or read book Applied Multivariate Statistical Analysis written by Wolfgang Karl Härdle and published by Springer Nature. This book was released on with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Matrix Based Introduction to Multivariate Data Analysis written by Kohei Adachi and published by Springer. This book was released on 2016-10-11 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book enables readers who may not be familiar with matrices to understand a variety of multivariate analysis procedures in matrix forms. Another feature of the book is that it emphasizes what model underlies a procedure and what objective function is optimized for fitting the model to data. The author believes that the matrix-based learning of such models and objective functions is the fastest way to comprehend multivariate data analysis. The text is arranged so that readers can intuitively capture the purposes for which multivariate analysis procedures are utilized: plain explanations of the purposes with numerical examples precede mathematical descriptions in almost every chapter. This volume is appropriate for undergraduate students who already have studied introductory statistics. Graduate students and researchers who are not familiar with matrix-intensive formulations of multivariate data analysis will also find the book useful, as it is based on modern matrix formulations with a special emphasis on singular value decomposition among theorems in matrix algebra. The book begins with an explanation of fundamental matrix operations and the matrix expressions of elementary statistics, followed by the introduction of popular multivariate procedures with advancing levels of matrix algebra chapter by chapter. This organization of the book allows readers without knowledge of matrices to deepen their understanding of multivariate data analysis.
Download or read book Applied Statistics and Multivariate Data Analysis for Business and Economics written by Thomas Cleff and published by Springer. This book was released on 2019-07-10 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook will familiarize students in economics and business, as well as practitioners, with the basic principles, techniques, and applications of applied statistics, statistical testing, and multivariate data analysis. Drawing on practical examples from the business world, it demonstrates the methods of univariate, bivariate, and multivariate statistical analysis. The textbook covers a range of topics, from data collection and scaling to the presentation and simple univariate analysis of quantitative data, while also providing advanced analytical procedures for assessing multivariate relationships. Accordingly, it addresses all topics typically covered in university courses on statistics and advanced applied data analysis. In addition, it does not limit itself to presenting applied methods, but also discusses the related use of Excel, SPSS, and Stata.
Download or read book Multivariate Data Analysis on Matrix Manifolds written by Nickolay Trendafilov and published by Springer Nature. This book was released on 2021-09-15 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level textbook aims to give a unified presentation and solution of several commonly used techniques for multivariate data analysis (MDA). Unlike similar texts, it treats the MDA problems as optimization problems on matrix manifolds defined by the MDA model parameters, allowing them to be solved using (free) optimization software Manopt. The book includes numerous in-text examples as well as Manopt codes and software guides, which can be applied directly or used as templates for solving similar and new problems. The first two chapters provide an overview and essential background for studying MDA, giving basic information and notations. Next, it considers several sets of matrices routinely used in MDA as parameter spaces, along with their basic topological properties. A brief introduction to matrix (Riemannian) manifolds and optimization methods on them with Manopt complete the MDA prerequisite. The remaining chapters study individual MDA techniques in depth. The number of exercises complement the main text with additional information and occasionally involve open and/or challenging research questions. Suitable fields include computational statistics, data analysis, data mining and data science, as well as theoretical computer science, machine learning and optimization. It is assumed that the readers have some familiarity with MDA and some experience with matrix analysis, computing, and optimization.
Download or read book Advanced Multivariate Statistics with Matrices written by Tõnu Kollo and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents important tools and techniques for treating problems in m- ern multivariate statistics in a systematic way. The ambition is to indicate new directions as well as to present the classical part of multivariate statistical analysis in this framework. The book has been written for graduate students and statis- cians who are not afraid of matrix formalism. The goal is to provide them with a powerful toolkit for their research and to give necessary background and deeper knowledge for further studies in di?erent areas of multivariate statistics. It can also be useful for researchers in applied mathematics and for people working on data analysis and data mining who can ?nd useful methods and ideas for solving their problems. Ithasbeendesignedasatextbookforatwosemestergraduatecourseonmultiva- ate statistics. Such a course has been held at the Swedish Agricultural University in 2001/02. On the other hand, it can be used as material for series of shorter courses. In fact, Chapters 1 and 2 have been used for a graduate course ”Matrices in Statistics” at University of Tartu for the last few years, and Chapters 2 and 3 formed the material for the graduate course ”Multivariate Asymptotic Statistics” in spring 2002. An advanced course ”Multivariate Linear Models” may be based on Chapter 4. A lot of literature is available on multivariate statistical analysis written for di?- ent purposes and for people with di?erent interests, background and knowledge.
Download or read book Multivariate Statistics written by Wolfgang Härdle and published by Springer Science & Business Media. This book was released on 2007-07-27 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors have cleverly used exercises and their solutions to explore the concepts of multivariate data analysis. Broken down into three sections, this book has been structured to allow students in economics and finance to work their way through a well formulated exploration of this core topic. The first part of this book is devoted to graphical techniques. The second deals with multivariate random variables and presents the derivation of estimators and tests for various practical situations. The final section contains a wide variety of exercises in applied multivariate data analysis.
Download or read book Applied Multivariate Statistics with R written by Daniel Zelterman and published by Springer Nature. This book was released on 2023-01-20 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, this book brings multivariate statistics to graduate-level practitioners, making these analytical methods accessible without lengthy mathematical derivations. Using the open source shareware program R, Dr. Zelterman demonstrates the process and outcomes for a wide array of multivariate statistical applications. Chapters cover graphical displays; linear algebra; univariate, bivariate and multivariate normal distributions; factor methods; linear regression; discrimination and classification; clustering; time series models; and additional methods. He uses practical examples from diverse disciplines, to welcome readers from a variety of academic specialties. Each chapter includes exercises, real data sets, and R implementations. The book avoids theoretical derivations beyond those needed to fully appreciate the methods. Prior experience with R is not necessary. New to this edition are chapters devoted to longitudinal studies and the clustering of large data. It is an excellent resource for students of multivariate statistics, as well as practitioners in the health and life sciences who are looking to integrate statistics into their work.
Download or read book Goodness of Fit Statistics for Discrete Multivariate Data written by Timothy R.C. Read and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: The statistical analysis of discrete multivariate data has received a great deal of attention in the statistics literature over the past two decades. The develop ment ofappropriate models is the common theme of books such as Cox (1970), Haberman (1974, 1978, 1979), Bishop et al. (1975), Gokhale and Kullback (1978), Upton (1978), Fienberg (1980), Plackett (1981), Agresti (1984), Goodman (1984), and Freeman (1987). The objective of our book differs from those listed above. Rather than concentrating on model building, our intention is to describe and assess the goodness-of-fit statistics used in the model verification part of the inference process. Those books that emphasize model development tend to assume that the model can be tested with one of the traditional goodness-of-fit tests 2 2 (e.g., Pearson's X or the loglikelihood ratio G ) using a chi-squared critical value. However, it is well known that this can give a poor approximation in many circumstances. This book provides the reader with a unified analysis of the traditional goodness-of-fit tests, describing their behavior and relative merits as well as introducing some new test statistics. The power-divergence family of statistics (Cressie and Read, 1984) is used to link the traditional test statistics through a single real-valued parameter, and provides a way to consolidate and extend the current fragmented literature. As a by-product of our analysis, a new 2 2 statistic emerges "between" Pearson's X and the loglikelihood ratio G that has some valuable properties.
Download or read book Applied Multivariate Data Analysis written by J.D. Jobson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: An easy to read survey of data analysis, linear regression models and analysis of variance. The extensive development of the linear model includes the use of the linear model approach to analysis of variance provides a strong link to statistical software packages, and is complemented by a thorough overview of theory. It is assumed that the reader has the background equivalent to an introductory book in statistical inference. Can be read easily by those who have had brief exposure to calculus and linear algebra. Intended for first year graduate students in business, social and the biological sciences. Provides the student with the necessary statistics background for a course in research methodology. In addition, undergraduate statistics majors will find this text useful as a survey of linear models and their applications.
Download or read book Multivariate Statistics for Wildlife and Ecology Research written by Kevin McGarigal and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its focus on the practical application of the techniques of multivariate statistics, this book shapes the powerful tools of statistics for the specific needs of ecologists and makes statistics more applicable to their course of study. It gives readers a solid conceptual understanding of the role of multivariate statistics in ecological applications and the relationships among various techniques, while avoiding detailed mathematics and the underlying theory. More importantly, the reader will gain insight into the type of research questions best handled by each technique and the important considerations in applying them. Whether used as a textbook for specialised courses or as a supplement to general statistics texts, the book emphasises those techniques that students of ecology and natural resources most need to understand and employ in their research. While targeted for upper-division and graduate students in wildlife biology, forestry, and ecology, and for professional wildlife scientists and natural resource managers, this book will also be valuable to researchers in any of the biological sciences.
Download or read book Statistical Tables for Multivariate Analysis written by Heinz Kres and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: An English translation of my "Statistisahe Tafeln zur multivariaten Analysis - Ein Handbuah mit Hinweisen zur Anwendung" was planned already in 1975 when I prepared the German volume. The tables were immediately supplied with German and English headings for the inten ded photo-offset printing. In the meantime. new and important tables for multivariate statistiaal hypotheses and proaedures have been aompiled and published. Only four of them have been inaorporated in the present volume. The seleation of these tables must be on an individual basis for reasons of spaae. Let me mention only the new tables for sample size determination in MANOVA. The instruations for using the tables are all organized in the same way. They are kept short sinae it is not the task of suah a work to provide an introduation to the theory and praatiae of multivariate analysis. I have renounaed giving examples for the same reason. I wish instead to refer the reader to the many good textbooks that are avai lable. as well as to my own works on methods that are in preparation. Furthermore. I am of the opinion that statistiaal tables should aaaom pany the textbook rather than be inaluded in it. vii viii Finally, my thanks go to the translator, Mr. Peter R. Wadsack, as ~ell as to the ladies and gentlemen of Springer-Verlag for their pleasant collaboration and their indulgence of my numerous requests
Download or read book Multivariate Statistical Methods written by György Terdik and published by Springer Nature. This book was released on 2021-10-26 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a general method for deriving higher-order statistics of multivariate distributions with simple algorithms that allow for actual calculations. Multivariate nonlinear statistical models require the study of higher-order moments and cumulants. The main tool used for the definitions is the tensor derivative, leading to several useful expressions concerning Hermite polynomials, moments, cumulants, skewness, and kurtosis. A general test of multivariate skewness and kurtosis is obtained from this treatment. Exercises are provided for each chapter to help the readers understand the methods. Lastly, the book includes a comprehensive list of references, equipping readers to explore further on their own.
Download or read book Theory of Multivariate Statistics written by Martin Bilodeau and published by Springer Science & Business Media. This book was released on 2008-01-20 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended as a textbook for students taking a first graduate course in the subject, as well as for the general reference of interested research workers, this text discusses, in a readable form, developments from recently published work on certain broad topics not otherwise easily accessible, such as robust inference and the use of the bootstrap in a multivariate setting. A minimum background expected of the reader would include at least two courses in mathematical statistics, and certainly some exposure to the calculus of several variables together with the descriptive geometry of linear algebra.
Download or read book A First Course in Multivariate Statistics written by Bernard Flury and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained introduction to the field, carefully balancing mathematical theory and practical applications. It starts at an elementary level, developing concepts of multivariate distributions from first principles. After a chapter on the multivariate normal distribution reviewing the classical parametric theory, methods of estimation are explored using the plug-in principles as well as maximum likelihood. Two chapters on discrimination and classification, including logistic regression, form the core of the book, followed by methods of testing hypotheses developed from heuristic principles, likelihood ratio tests and permutation tests. Finally, the powerful self-consistency principle is used to introduce principal components as a method of approximation, rounded off by a chapter on finite mixture analysis.