EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Multistep Multiderivative Methods for the Numerical Solution of Initial Value Problems of Ordinary Differential Equations

Download or read book Multistep Multiderivative Methods for the Numerical Solution of Initial Value Problems of Ordinary Differential Equations written by Rolf Jeltsch and published by . This book was released on 1976 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Methods for Initial Value Problems in Ordinary Differential Equations

Download or read book Numerical Methods for Initial Value Problems in Ordinary Differential Equations written by Simeon Ola Fatunla and published by Academic Press. This book was released on 2014-05-10 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Method for Initial Value Problems in Ordinary Differential Equations deals with numerical treatment of special differential equations: stiff, stiff oscillatory, singular, and discontinuous initial value problems, characterized by large Lipschitz constants. The book reviews the difference operators, the theory of interpolation, first integral mean value theorem, and numerical integration algorithms. The text explains the theory of one-step methods, the Euler scheme, the inverse Euler scheme, and also Richardson's extrapolation. The book discusses the general theory of Runge-Kutta processes, including the error estimation, and stepsize selection of the R-K process. The text evaluates the different linear multistep methods such as the explicit linear multistep methods (Adams-Bashforth, 1883), the implicit linear multistep methods (Adams-Moulton scheme, 1926), and the general theory of linear multistep methods. The book also reviews the existing stiff codes based on the implicit/semi-implicit, singly/diagonally implicit Runge-Kutta schemes, the backward differentiation formulas, the second derivative formulas, as well as the related extrapolation processes. The text is intended for undergraduates in mathematics, computer science, or engineering courses, andfor postgraduate students or researchers in related disciplines.

Book Numerical Methods for Ordinary Differential Equations

Download or read book Numerical Methods for Ordinary Differential Equations written by David F. Griffiths and published by Springer Science & Business Media. This book was released on 2010-11-11 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com

Book Numerical Solution of Initial Value Problems in Differential Algebraic Equations

Download or read book Numerical Solution of Initial Value Problems in Differential Algebraic Equations written by K. E. Brenan and published by SIAM. This book was released on 1996-01-01 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes some of the places where differential-algebraic equations (DAE's) occur.

Book Multistep Multiderivative Methods for the Numerical Solution of Initial Vale Problems of Ordinary Differential Equations

Download or read book Multistep Multiderivative Methods for the Numerical Solution of Initial Vale Problems of Ordinary Differential Equations written by Rolf Jeltsch and published by . This book was released on 1976 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Solving Differential Equations by Multistep Initial and Boundary Value Methods

Download or read book Solving Differential Equations by Multistep Initial and Boundary Value Methods written by L Brugnano and published by CRC Press. This book was released on 1998-05-22 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical approximation of solutions of differential equations has been, and continues to be, one of the principal concerns of numerical analysis and is an active area of research. The new generation of parallel computers have provoked a reconsideration of numerical methods. This book aims to generalize classical multistep methods for both initial and boundary value problems; to present a self-contained theory which embraces and generalizes the classical Dahlquist theory; to treat nonclassical problems, such as Hamiltonian problems and the mesh selection; and to select appropriate methods for a general purpose software capable of solving a wide range of problems efficiently, even on parallel computers.

Book Numerical Methods for Differential Equations

Download or read book Numerical Methods for Differential Equations written by J.R. Dormand and published by CRC Press. This book was released on 2018-05-04 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: With emphasis on modern techniques, Numerical Methods for Differential Equations: A Computational Approach covers the development and application of methods for the numerical solution of ordinary differential equations. Some of the methods are extended to cover partial differential equations. All techniques covered in the text are on a program disk included with the book, and are written in Fortran 90. These programs are ideal for students, researchers, and practitioners because they allow for straightforward application of the numerical methods described in the text. The code is easily modified to solve new systems of equations. Numerical Methods for Differential Equations: A Computational Approach also contains a reliable and inexpensive global error code for those interested in global error estimation. This is a valuable text for students, who will find the derivations of the numerical methods extremely helpful and the programs themselves easy to use. It is also an excellent reference and source of software for researchers and practitioners who need computer solutions to differential equations.

Book Modern Numerical Methods for Ordinary Differential Equations

Download or read book Modern Numerical Methods for Ordinary Differential Equations written by G. Hall and published by Oxford University Press, USA. This book was released on 1976 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Solution of Ordinary Differential Equations

Download or read book Numerical Solution of Ordinary Differential Equations written by L. Fox and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nearly 20 years ago we produced a treatise (of about the same length as this book) entitled Computing methods for scientists and engineers. It was stated that most computation is performed by workers whose mathematical training stopped somewhere short of the 'professional' level, and that some books are therefore needed which use quite simple mathematics but which nevertheless communicate the essence of the 'numerical sense' which is exhibited by the real computing experts and which is surely needed, at least to some extent, by all who use modern computers and modern numerical software. In that book we treated, at no great length, a variety of computational problems in which the material on ordinary differential equations occupied about 50 pages. At that time it was quite common to find books on numerical analysis, with a little on each topic ofthat field, whereas today we are more likely to see similarly-sized books on each major topic: for example on numerical linear algebra, numerical approximation, numerical solution ofordinary differential equations, numerical solution of partial differential equations, and so on. These are needed because our numerical education and software have improved and because our relevant problems exhibit more variety and more difficulty. Ordinary differential equa tions are obvious candidates for such treatment, and the current book is written in this sense.

Book Numerical Methods for Ordinary Differential Equations

Download or read book Numerical Methods for Ordinary Differential Equations written by J. C. Butcher and published by John Wiley & Sons. This book was released on 2004-08-20 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book updates the exceptionally popular Numerical Analysis of Ordinary Differential Equations. "This book is...an indispensible reference for any researcher."-American Mathematical Society on the First Edition. Features: * New exercises included in each chapter. * Author is widely regarded as the world expert on Runge-Kutta methods * Didactic aspects of the book have been enhanced by interspersing the text with exercises. * Updated Bibliography.

Book Numerical Initial Value Problems in Ordinary Differential Equations

Download or read book Numerical Initial Value Problems in Ordinary Differential Equations written by Charles William Gear and published by Prentice Hall. This book was released on 1971 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction -- Higher order one-step methods -- Systems of equations and equations of order greater than one -- Convergence, error bounds, and error estimates for one-step methods -- The choice of step size and order -- Extrapolation methods -- Multivalue or multistep methods - introduction -- General multistep methods, order and stability -- Multivalue methods -- Existence, convergence, and error estimates for multivalue methods -- Special methods for special problems -- Choosing a method.

Book The Numerical Solution of Ordinary and Partial Differential Equations

Download or read book The Numerical Solution of Ordinary and Partial Differential Equations written by Granville Sewell and published by Academic Press. This book was released on 2014-05-10 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Numerical Solution of Ordinary and Partial Differential Equations is an introduction to the numerical solution of ordinary and partial differential equations. Finite difference methods for solving partial differential equations are mostly classical low order formulas, easy to program but not ideal for problems with poorly behaved solutions or (especially) for problems in irregular multidimensional regions. FORTRAN77 programs are used to implement many of the methods studied. Comprised of six chapters, this book begins with a review of direct methods for the solution of linear systems, with emphasis on the special features of the linear systems that arise when differential equations are solved. The next four chapters deal with the more commonly used finite difference methods for solving a variety of problems, including both ordinary differential equations and partial differential equations, and both initial value and boundary value problems. The final chapter is an overview of the basic ideas behind the finite element method and covers the Galerkin method for boundary value problems. Examples using piecewise linear trial functions, cubic hermite trial functions, and triangular elements are presented. This monograph is appropriate for senior-level undergraduate or first-year graduate students of mathematics.

Book Construction Of Integration Formulas For Initial Value Problems

Download or read book Construction Of Integration Formulas For Initial Value Problems written by P.J. Van Der Houwen and published by Elsevier. This book was released on 2012-12-02 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Construction of Integration Formulas for Initial Value Problems provides practice-oriented insights into the numerical integration of initial value problems for ordinary differential equations. It describes a number of integration techniques, including single-step methods such as Taylor methods, Runge-Kutta methods, and generalized Runge-Kutta methods. It also looks at multistep methods and stability polynomials. Comprised of four chapters, this volume begins with an overview of definitions of important concepts and theorems that are relevant to the construction of numerical integration methods for initial value problems. It then turns to a discussion of how to convert two-point and initial boundary value problems for partial differential equations into initial value problems for ordinary differential equations. The reader is also introduced to stiff differential equations, partial differential equations, matrix theory and functional analysis, and non-linear equations. The order of approximation of the single-step methods to the differential equation is considered, along with the convergence of a consistent single-step method. There is an explanation on how to construct integration formulas with adaptive stability functions and how to derive the most important stability polynomials. Finally, the book examines the consistency, convergence, and stability conditions for multistep methods. This book is a valuable resource for anyone who is acquainted with introductory calculus, linear algebra, and functional analysis.

Book Numerical Solution of Initial Value Problems

Download or read book Numerical Solution of Initial Value Problems written by Francis Ceschino and published by . This book was released on 1966 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction -- Part 1 : The single-step methods -- Generalities on the single-step methods Euler's method-Taylor's series -- Runge-Kutta method -- Relationships of the Runge-Kutta principle with the various single-step methods -- Runge-Kutta type formulas using higher order derivatives -- Part 2 : Multistep methods -- Adams method and analogues -- Different multistep formulas -- Application of the Runge-Kutta principle to the multistep methods -- Part 3 : Theoretical and practical considerations -- Theoretical considerations -- Practical considerations.

Book Numerical Analysis Of Ordinary Differential Equations And Its Applications

Download or read book Numerical Analysis Of Ordinary Differential Equations And Its Applications written by Taketomo Mitsui and published by World Scientific. This book was released on 1995-10-12 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book collects original articles on numerical analysis of ordinary differential equations and its applications. Some of the topics covered in this volume are: discrete variable methods, Runge-Kutta methods, linear multistep methods, stability analysis, parallel implementation, self-validating numerical methods, analysis of nonlinear oscillation by numerical means, differential-algebraic and delay-differential equations, and stochastic initial value problems.

Book Numerical Solution Of Ordinary And Partial Differential Equations  The  3rd Edition

Download or read book Numerical Solution Of Ordinary And Partial Differential Equations The 3rd Edition written by Granville Sewell and published by World Scientific. This book was released on 2014-12-16 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents methods for the computational solution of differential equations, both ordinary and partial, time-dependent and steady-state. Finite difference methods are introduced and analyzed in the first four chapters, and finite element methods are studied in chapter five. A very general-purpose and widely-used finite element program, PDE2D, which implements many of the methods studied in the earlier chapters, is presented and documented in Appendix A.The book contains the relevant theory and error analysis for most of the methods studied, but also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs (FORTRAN or MATLAB) for solving ordinary and partial differential equations, using both finite differences and finite elements. In addition, they will be able to solve very difficult partial differential equations using the software PDE2D, presented in Appendix A. PDE2D solves very general steady-state, time-dependent and eigenvalue PDE systems, in 1D intervals, general 2D regions, and a wide range of simple 3D regions.The Windows version of PDE2D comes free with every purchase of this book. More information at www.pde2d.com/contact.