EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Multiscale Wavelet Methods for Partial Differential Equations

Download or read book Multiscale Wavelet Methods for Partial Differential Equations written by Wolfgang Dahmen and published by Elsevier. This book was released on 1997-08-13 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of fields will find Multiscale Wavelet for Partial Differential Equations to be a valuable resource. Covers important areas of computational mechanics such as elasticity and computational fluid dynamics Includes a clear study of turbulence modeling Contains recent research on multiresolution analyses with operator-adapted wavelet discretizations Presents well-documented numerical experiments connected with the development of algorithms, useful in specific applications

Book Numerical Analysis of Wavelet Methods

Download or read book Numerical Analysis of Wavelet Methods written by A. Cohen and published by Elsevier. This book was released on 2003-04-29 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their introduction in the 1980's, wavelets have become a powerful tool in mathematical analysis, with applications such as image compression, statistical estimation and numerical simulation of partial differential equations. One of their main attractive features is the ability to accurately represent fairly general functions with a small number of adaptively chosen wavelet coefficients, as well as to characterize the smoothness of such functions from the numerical behaviour of these coefficients. The theoretical pillar that underlies such properties involves approximation theory and function spaces, and plays a pivotal role in the analysis of wavelet-based numerical methods. This book offers a self-contained treatment of wavelets, which includes this theoretical pillar and it applications to the numerical treatment of partial differential equations. Its key features are: 1. Self-contained introduction to wavelet bases and related numerical algorithms, from the simplest examples to the most numerically useful general constructions. 2. Full treatment of the theoretical foundations that are crucial for the analysis of wavelets and other related multiscale methods : function spaces, linear and nonlinear approximation, interpolation theory. 3. Applications of these concepts to the numerical treatment of partial differential equations : multilevel preconditioning, sparse approximations of differential and integral operators, adaptive discretization strategies.

Book Wavelet Methods for Elliptic Partial Differential Equations

Download or read book Wavelet Methods for Elliptic Partial Differential Equations written by Karsten Urban and published by Numerical Mathematics and Scie. This book was released on 2009 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wavelet methods are by now a well-known tool in image processing (jpeg2000). These functions have been used successfully in other areas, however. Elliptic Partial Differential Equations which model several processes in, for example, science and engineering, is one such field. This book, based on the author's course, gives an introduction to wavelet methods in general and then describes their application for the numerical solution of elliptic partial differential equations. Recently developed adaptive methods are also covered and each scheme is complemented with numerical results , exercises, and corresponding software.

Book Numerical Analysis of Wavelet Methods

Download or read book Numerical Analysis of Wavelet Methods written by Albert Cohen and published by JAI Press. This book was released on 2003-06-26 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their introduction in the 1980's, wavelets have become a powerful tool in mathematical analysis, with applications such as image compression, statistical estimation and numerical simulation of partial differential equations. One of their main attractive features is the ability to accurately represent fairly general functions with a small number of adaptively chosen wavelet coefficients, as well as to characterize the smoothness of such functions from the numerical behaviour of these coefficients. The theoretical pillar that underlies such properties involves approximation theory and function spaces, and plays a pivotal role in the analysis of wavelet-based numerical methods. This book offers a self-contained treatment of wavelets, which includes this theoretical pillar and it applications to the numerical treatment of partial differential equations. Its key features are: 1. Self-contained introduction to wavelet bases and related numerical algorithms, from the simplest examples to the most numerically useful general constructions. 2. Full treatment of the theoretical foundations that are crucial for the analysis of wavelets and other related multiscale methods: function spaces, linear and nonlinear approximation, interpolation theory. 3. Applications of these concepts to the numerical treatment of partial differential equations: multilevel preconditioning, sparse approximations of differential and integral operators, adaptive discretization strategies.

Book   cole D   t   D Analyse Num  rique

Download or read book cole D t D Analyse Num rique written by Jeffrey Saltzman and published by . This book was released on 1997* with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Wavelet Based Approximation Schemes for Singular Integral Equations

Download or read book Wavelet Based Approximation Schemes for Singular Integral Equations written by Madan Mohan Panja and published by CRC Press. This book was released on 2020-06-07 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many mathematical problems in science and engineering are defined by ordinary or partial differential equations with appropriate initial-boundary conditions. Among the various methods, boundary integral equation method (BIEM) is probably the most effective. It’s main advantage is that it changes a problem from its formulation in terms of unbounded differential operator to one for an integral/integro-differential operator, which makes the problem tractable from the analytical or numerical point of view. Basically, the review/study of the problem is shifted to a boundary (a relatively smaller domain), where it gives rise to integral equations defined over a suitable function space. Integral equations with singular kernels areamong the most important classes in the fields of elasticity, fluid mechanics, electromagnetics and other domains in applied science and engineering. With the advancesin computer technology, numerical simulations have become important tools in science and engineering. Several methods have been developed in numerical analysis for equations in mathematical models of applied sciences. Widely used methods include: Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM) and Galerkin Method (GM). Unfortunately, none of these are versatile. Each has merits and limitations. For example, the widely used FDM and FEM suffers from difficulties in problem solving when rapid changes appear in singularities. Even with the modern computing machines, analysis of shock-wave or crack propagations in three dimensional solids by the existing classical numerical schemes is challenging (computational time/memory requirements). Therefore, with the availability of faster computing machines, research into the development of new efficient schemes for approximate solutions/numerical simulations is an ongoing parallel activity. Numerical methods based on wavelet basis (multiresolution analysis) may be regarded as a confluence of widely used numerical schemes based on Finite Difference Method, Finite Element Method, Galerkin Method, etc. The objective of this monograph is to deal with numerical techniques to obtain (multiscale) approximate solutions in wavelet basis of different types of integral equations with kernels involving varieties of singularities appearing in the field of elasticity, fluid mechanics, electromagnetics and many other domains in applied science and engineering.

Book Wavelets Theory and Its Applications

Download or read book Wavelets Theory and Its Applications written by Mani Mehra and published by Springer. This book was released on 2018-11-03 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides comprehensive information on the conceptual basis of wavelet theory and it applications. Maintaining an essential balance between mathematical rigour and the practical applications of wavelet theory, the book is closely linked to the wavelet MATLAB toolbox, which is accompanied, wherever applicable, by relevant MATLAB codes. The book is divided into four parts, the first of which is devoted to the mathematical foundations. The second part offers a basic introduction to wavelets. The third part discusses wavelet-based numerical methods for differential equations, while the last part highlights applications of wavelets in other fields. The book is ideally suited as a text for undergraduate and graduate students of mathematics and engineering.

Book A Wavelet Optimized Adaptive Multi Domain Method

Download or read book A Wavelet Optimized Adaptive Multi Domain Method written by J. S. Hesthaven and published by . This book was released on 1997 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Wavelet Analysis and Multiresolution Methods

Download or read book Wavelet Analysis and Multiresolution Methods written by Tian-Xiao He and published by CRC Press. This book was released on 2000-05-05 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains papers selected from the Wavelet Analysis and Multiresolution Methods Session of the AMS meeting held at the University of Illinois at Urbana-Champaign. The contributions cover: construction, analysis, computation and application of multiwavelets; scaling vectors; nonhomogenous refinement; mulivariate orthogonal and biorthogonal wavelets; and other related topics.

Book Fourier Methods in Science and Engineering

Download or read book Fourier Methods in Science and Engineering written by Wen L. Li and published by CRC Press. This book was released on 2022-11-21 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This innovative book discusses and applies the generalized Fourier Series to a variety of problems commonly encountered within science and engineering, equipping the readers with a clear pathway through which to use the Fourier methods as a solution technique for a wide range of differential equations and boundary value problems. Beginning with an overview of the conventional Fourier series theory, this book introduces the generalized Fourier series (GFS), emphasizing its notable rate of convergence when compared to the conventional Fourier series expansions. After systematically presenting the GFS as a powerful and unified solution method for ordinary differential equations and partial differential equations, this book expands on some representative boundary value problems, diving into their multiscale characteristics. This book will provide readers with the comprehensive foundation necessary for solving a wide spectrum of mathematical problems key to practical applications. It will also be of interest to researchers, engineers, and college students in various science, engineering, and mathematics fields.

Book Besov Regularity of Stochastic Partial Differential Equations on Bounded Lipschitz Domains

Download or read book Besov Regularity of Stochastic Partial Differential Equations on Bounded Lipschitz Domains written by Petru A. Cioica and published by Logos Verlag Berlin GmbH. This book was released on 2015-03-01 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic partial differential equations (SPDEs, for short) are the mathematical models of choice for space time evolutions corrupted by noise. Although in many settings it is known that the resulting SPDEs have a unique solution, in general, this solution is not given explicitly. Thus, in order to make those mathematical models ready to use for real life applications, appropriate numerical algorithms are needed. To increase efficiency, it would be tempting to design suitable adaptive schemes based, e.g., on wavelets. However, it is not a priori clear whether such adaptive strategies can outperform well-established uniform alternatives. Their theoretical justification requires a rigorous regularity analysis in so-called non-linear approximation scales of Besov spaces. In this thesis the regularity of (semi-)linear second order SPDEs of Itô type on general bounded Lipschitz domains is analysed. The non-linear approximation scales of Besov spaces are used to measure the regularity with respect to the space variable, the time regularity being measured first in terms of integrability and afterwards in terms of Hölder norms. In particular, it is shown that in specific situations the spatial Besov regularity of the solution in the non-linear approximation scales is generically higher than its corresponding classical Sobolev regularity. This indicates that it is worth developing spatially adaptive wavelet methods for solving SPDEs instead of using uniform alternatives.

Book Efficient Numerical Methods for Non local Operators

Download or read book Efficient Numerical Methods for Non local Operators written by Steffen Börm and published by European Mathematical Society. This book was released on 2010 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hierarchical matrices present an efficient way of treating dense matrices that arise in the context of integral equations, elliptic partial differential equations, and control theory. While a dense $n\times n$ matrix in standard representation requires $n^2$ units of storage, a hierarchical matrix can approximate the matrix in a compact representation requiring only $O(n k \log n)$ units of storage, where $k$ is a parameter controlling the accuracy. Hierarchical matrices have been successfully applied to approximate matrices arising in the context of boundary integral methods, to construct preconditioners for partial differential equations, to evaluate matrix functions, and to solve matrix equations used in control theory. $\mathcal{H}^2$-matrices offer a refinement of hierarchical matrices: Using a multilevel representation of submatrices, the efficiency can be significantly improved, particularly for large problems. This book gives an introduction to the basic concepts and presents a general framework that can be used to analyze the complexity and accuracy of $\mathcal{H}^2$-matrix techniques. Starting from basic ideas of numerical linear algebra and numerical analysis, the theory is developed in a straightforward and systematic way, accessible to advanced students and researchers in numerical mathematics and scientific computing. Special techniques are required only in isolated sections, e.g., for certain classes of model problems.

Book Haar Wavelets

Download or read book Haar Wavelets written by Ülo Lepik and published by Springer Science & Business Media. This book was released on 2014-01-09 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to present a systematic review of applications of the Haar wavelet method for solving Calculus and Structural Mechanics problems. Haar wavelet-based solutions for a wide range of problems, such as various differential and integral equations, fractional equations, optimal control theory, buckling, bending and vibrations of elastic beams are considered. Numerical examples demonstrating the efficiency and accuracy of the Haar method are provided for all solutions.

Book Perspectives in Partial Differential Equations  Harmonic Analysis and Applications

Download or read book Perspectives in Partial Differential Equations Harmonic Analysis and Applications written by Dorina Mitrea and published by American Mathematical Soc.. This book was released on 2008 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a collection of papers contributed on the occasion of Mazya's 70th birthday by a distinguished group of experts of international stature in the fields of harmonic analysis, partial differential equations, function theory, and spectral analysis, reflecting the state of the art in these areas.

Book Integration and Cubature Methods

Download or read book Integration and Cubature Methods written by Willi Freeden and published by CRC Press. This book was released on 2017-11-22 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: In industry and economics, the most common solutions of partial differential equations involving multivariate numerical integration over cuboids include techniques of iterated one-dimensional approximate integration. In geosciences, however, the integrals are extended over potato-like volumes (such as the ball, ellipsoid, geoid, or the Earth) and their boundary surfaces which require specific multi-variate approximate integration methods. Integration and Cubature Methods: A Geomathematically Oriented Course provides a basic foundation for students, researchers, and practitioners interested in precisely these areas, as well as breaking new ground in integration and cubature in geomathematics.

Book Wavelets and Their Applications

Download or read book Wavelets and Their Applications written by Mei Kobayashi and published by SIAM. This book was released on 1998-01-01 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of independent case studies demonstrates how wavelet techniques have been used to solve open problems and develop insight into the nature of the systems under study. Each case begins with a description of the problem and points to the specific properties of wavelets and techniques used for determining a solution. The cases range from a very simple wavelet-based technique for reducing noise in laboratory data to complex work on two-dimensional geographical data display conducted at the Earthquake Research Institute in Japan. One case study shows how wavelet analysis is used in the development of a Japanese text-to-speech system for personal computers and another presents new wavelet techniques developed for and applied to the study of atmospheric wind, turbulent fluid, and seismic acceleration data.

Book Wavelets and Multiwavelets

Download or read book Wavelets and Multiwavelets written by Fritz Keinert and published by CRC Press. This book was released on 2003-11-12 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretically, multiwavelets hold significant advantages over standard wavelets, particularly for solving more complicated problems, and hence are of great interest. Meeting the needs of engineers and mathematicians, this book provides a comprehensive overview of multiwavelets. The author presents the theory of wavelets from the viewpoint of genera