EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Multiscale Structural Mechanics

Download or read book Multiscale Structural Mechanics written by and published by Wiley-Blackwell. This book was released on with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multiscale Modeling in Solid Mechanics

Download or read book Multiscale Modeling in Solid Mechanics written by Ugo Galvanetto and published by Imperial College Press. This book was released on 2010 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique volume presents the state of the art in the field of multiscale modeling in solid mechanics, with particular emphasis on computational approaches. For the first time, contributions from both leading experts in the field and younger promising researchers are combined to give a comprehensive description of the recently proposed techniques and the engineering problems tackled using these techniques. The book begins with a detailed introduction to the theories on which different multiscale approaches are based, with regards to linear Homogenisation as well as various nonlinear approaches. It then presents advanced applications of multiscale approaches applied to nonlinear mechanical problems. Finally, the novel topic of materials with self-similar structure is discussed. Sample Chapter(s). Chapter 1: Computational Homogenisation for Non-Linear Heterogeneous Solids (808 KB). Contents: Computational Homogenisation for Non-Linear Heterogeneous Solids (V G Kouznetsova et al.); Two-Scale Asymptotic Homogenisation-Based Finite Element Analysis of Composite Materials (Q-Z Xiao & B L Karihaloo); Multi-Scale Boundary Element Modelling of Material Degradation and Fracture (G K Sfantos & M H Aliabadi); Non-Uniform Transformation Field Analysis: A Reduced Model for Multiscale Non-Linear Problems in Solid Mechanics (J-C Michel & P Suquet); Multiscale Approach for the Thermomechanical Analysis of Hierarchical Structures (M J Lefik et al.); Recent Advances in Masonry Modelling: Micro-Modelling and Homogenisation (P B Louren o); Mechanics of Materials with Self-Similar Hierarchical Microstructure (R C Picu & M A Soare). Readership: Researchers and academics in the field of heterogeneous materials and mechanical engineering; professionals in aeronautical engineering and materials science.

Book Multiscale Modeling and Simulation of Composite Materials and Structures

Download or read book Multiscale Modeling and Simulation of Composite Materials and Structures written by Young Kwon and published by Springer Science & Business Media. This book was released on 2007-12-04 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state-of-the-art in multiscale modeling and simulation techniques for composite materials and structures. It focuses on the structural and functional properties of engineering composites and the sustainable high performance of components and structures. The multiscale techniques can be also applied to nanocomposites which are important application areas in nanotechnology. There are few books available on this topic.

Book Materials with Internal Structure

Download or read book Materials with Internal Structure written by Patrizia Trovalusci and published by Springer. This book was released on 2015-10-17 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a series of concise papers by researchers specialized in various fields of continuum and computational mechanics and of material science. The focus is on principles and strategies for multiscale modeling and simulation of complex heterogeneous materials, with periodic or random microstructure, subjected to various types of mechanical, thermal, chemical loadings and environmental effects. A wide overview of complex behavior of materials (plasticity, damage, fracture, growth, etc.) is provided. Among various approaches, attention is given to advanced non-classical continua modeling which, provided by constitutive characterization for the internal and external actions (in particular boundary conditions), is a very powerful frame for the gross mechanical description of complex material behaviors, able to circumvent the restrictions of classical coarse–graining multiscale approaches.

Book Dynamics  Strength of Materials and Durability in Multiscale Mechanics

Download or read book Dynamics Strength of Materials and Durability in Multiscale Mechanics written by Francesco dell'Isola and published by Springer Nature. This book was released on 2020-11-01 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the mathematical modeling and experimental study of systems involving two or more different length scales. The effects of phenomena occurring at the lower length scales on the behavior at higher scales are of intrinsic scientific interest, but can also be very effectively used to determine the behavior at higher length scales or at the macro-level. Efforts to exploit this micro- and macro-coupling are, naturally, being pursued with regard to every aspect of mechanical phenomena. This book focuses on the changes imposed on the dynamics, strength of materials and durability of mechanical systems by related multiscale phenomena. In particular, it addresses: 1: the impacts of effective dissipation due to kinetic energy trapped at lower scales 2: wave propagation in generalized continua 3: nonlinear phenomena in metamaterials 4: the formalization of more general models to describe the exotic behavior of meta-materials 5: the design and study of microstructures aimed at increasing the toughness and durability of novel materials

Book Multiscale Methods in Computational Mechanics

Download or read book Multiscale Methods in Computational Mechanics written by René de Borst and published by Springer Science & Business Media. This book was released on 2010-10-09 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work gives a modern, up-to-date account of recent developments in computational multiscale mechanics. Both upscaling and concurrent computing methodologies will be addressed for a range of application areas in computational solid and fluid mechanics: Scale transitions in materials, turbulence in fluid-structure interaction problems, multiscale/multilevel optimization, multiscale poromechanics. A Dutch-German research group that consists of qualified and well-known researchers in the field has worked for six years on the topic of computational multiscale mechanics. This text provides a unique opportunity to consolidate and disseminate the knowledge gained in this project. The addition of chapters written by experts outside this working group provides a broad and multifaceted view of this rapidly evolving field.

Book Multi scale Modelling for Structures and Composites

Download or read book Multi scale Modelling for Structures and Composites written by G. Panasenko and published by Springer Science & Business Media. This book was released on 2005-02-09 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerous applications of rod structures in civil engineering, aircraft and spacecraft confirm the importance of the topic. On the other hand the majority of books on structural mechanics use some simplifying hypotheses; these hypotheses do not allow to consider some important effects, for instance the boundary layer effects near the points of junction of rods. So the question concerning the limits of applicability of structural mechanics hypotheses and the possibilities of their refinement arise. In this connection the asymptotic analysis of equations of mathematical physics, the equations of elasticity in rod structures (without these hypotheses and simplifying assumptions being imposed) is undertaken in the present book. Moreover, a lot of modern structures are made of composite materials and therefore the material of the rods is not homogeneous. This inhomogeneity of the material can generate some unexpected effects. These effects are analysed in this book. The methods of multi-scale modelling are presented by the homogenization, multi-level asymptotic analysis and the domain decomposition. These methods give an access to a new class of hybrid models combining macroscopic description with "microscopic zooms".

Book Multi Scale Modeling of Structural Concrete

Download or read book Multi Scale Modeling of Structural Concrete written by Koichi Maekawa and published by CRC Press. This book was released on 2008-11-28 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increases in computer power have now enabled engineers to combine materials science with structural mechanics in the design and the assessment of concrete structures. The techniques developed have become especially useful for the performance assessment of such structures under coupled mechanistic and environmental actions. This allows effective management of infrastructure over a much longer life cycle, thus satisfying the requirements for durability and sustainability. This ground-breaking new book draws on the fields of materials and structural mechanics in an integrated way to address the questions of management and maintenance. It proposes a realistic way of simulating both constituent materials and structural responses under external loading and under ambient conditions. Where the research literature discusses component or element technology related to performance assessment, this book uniquely covers the subject at the level of the whole system including soil foundation, showing engineers how to model changes in concrete structures over time and how to use this for decision making in infrastructure maintenance and asset management.

Book Multiscale Solid Mechanics

Download or read book Multiscale Solid Mechanics written by Holm Altenbach and published by Springer Nature. This book was released on 2020-11-09 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the current of the state of the art in the multiscale mechanics of solids and structures. It comprehensively discusses new materials, including theoretical and experimental investigations their durability and strength, as well as fractures and damage

Book Multiscale Mechanics of Shock Wave Processes

Download or read book Multiscale Mechanics of Shock Wave Processes written by Yurii Meshcheryakov and published by Springer Nature. This book was released on 2021-09-30 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents theoretical and experimental investigations of mechanical behavior of solids under shock loading and highlights a multi-scale exchange process of energy and momentum between meso and macroscopic hierarchy. It also widely covers experimental approaches for the multi-scale response of solids to impacts including uniaxial strain conditions and high-velocity penetration processes. The content comprises two parts. The first part overviews modeling and theory of dynamically deformed solids from the multi-scale point of view. The second part describes experimental characterization of shock-induced solids and experimental probing of mesostructured and mesoscale dynamic processes in solids. The theory presented in the first part is then verified as it is compared with i) experiments of shock loading into different kinds of solids and ii) probed microstructure of post-shocked specimens by scanning electron microscopy, transmission electron microscopy and optical microscopy. The text is written on the basis of author’s lectures at universities and thus is concisely described for postgraduate students. It is also useful for researchers who work on the theory of multi-scale mechanics of solids and engineers who work on testing materials under dynamic loading.

Book Multiscale Methods in Computational Mechanics

Download or read book Multiscale Methods in Computational Mechanics written by Rene de Borst and published by Springer. This book was released on 2010-10-25 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work gives a modern, up-to-date account of recent developments in computational multiscale mechanics. Both upscaling and concurrent computing methodologies will be addressed for a range of application areas in computational solid and fluid mechanics: Scale transitions in materials, turbulence in fluid-structure interaction problems, multiscale/multilevel optimization, multiscale poromechanics. A Dutch-German research group that consists of qualified and well-known researchers in the field has worked for six years on the topic of computational multiscale mechanics. This text provides a unique opportunity to consolidate and disseminate the knowledge gained in this project. The addition of chapters written by experts outside this working group provides a broad and multifaceted view of this rapidly evolving field.

Book Multiscale Biomechanical Modeling of the Brain

Download or read book Multiscale Biomechanical Modeling of the Brain written by Mark F. Horstemeyer and published by Elsevier. This book was released on 2021-11-02 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale Biomechanical Modeling of the Brain discusses the constitutive modeling of the brain at various length scales (nanoscale, microscale, mesoscale, macroscale and structural scale). In each scale, the book describes the state-of-the- experimental and computational tools used to quantify critical deformational information at each length scale. Then, at the structural scale, several user-based constitutive material models are presented, along with real-world boundary value problems. Lastly, design and optimization concepts are presented for use in occupant-centric design frameworks. This book is useful for both academia and industry applications that cover basic science aspects or applied research in head and brain protection. The multiscale approach to this topic is unique, and not found in other books. It includes meticulously selected materials that aim to connect the mechanistic analysis of the brain tissue at size scales ranging from subcellular to organ levels. Presents concepts in a theoretical and thermodynamic framework for each length scale Teaches readers not only how to use an existing multiscale model for each brain but also how to develop a new multiscale model Takes an integrated experimental-computational approach and gives structured multiscale coverage of the problems

Book Multiscale Modeling and Simulation in Science

Download or read book Multiscale Modeling and Simulation in Science written by Björn Engquist and published by Springer Science & Business Media. This book was released on 2009-02-11 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most problems in science involve many scales in time and space. An example is turbulent ?ow where the important large scale quantities of lift and drag of a wing depend on the behavior of the small vortices in the boundarylayer. Another example is chemical reactions with concentrations of the species varying over seconds and hours while the time scale of the oscillations of the chemical bonds is of the order of femtoseconds. A third example from structural mechanics is the stress and strain in a solid beam which is well described by macroscopic equations but at the tip of a crack modeling details on a microscale are needed. A common dif?culty with the simulation of these problems and many others in physics, chemistry and biology is that an attempt to represent all scales will lead to an enormous computational problem with unacceptably long computation times and large memory requirements. On the other hand, if the discretization at a coarse level ignoresthe?nescale informationthenthesolutionwillnotbephysicallymeaningful. The in?uence of the ?ne scales must be incorporated into the model. This volume is the result of a Summer School on Multiscale Modeling and S- ulation in Science held at Boso ¤n, Lidingo ¤ outside Stockholm, Sweden, in June 2007. Sixty PhD students from applied mathematics, the sciences and engineering parti- pated in the summer school.

Book Multiscale Structural Topology Optimization

Download or read book Multiscale Structural Topology Optimization written by Liang Xia and published by Elsevier. This book was released on 2016-04-27 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale Structural Topology Optimization discusses the development of a multiscale design framework for topology optimization of multiscale nonlinear structures. With the intention to alleviate the heavy computational burden of the design framework, the authors present a POD-based adaptive surrogate model for the RVE solutions at the microscopic scale and make a step further towards the design of multiscale elastoviscoplastic structures. Various optimization methods for structural size, shape, and topology designs have been developed and widely employed in engineering applications. Topology optimization has been recognized as one of the most effective tools for least weight and performance design, especially in aeronautics and aerospace engineering. This book focuses on the simultaneous design of both macroscopic structure and microscopic materials. In this model, the material microstructures are optimized in response to the macroscopic solution, which results in the nonlinearity of the equilibrium problem of the interface of the two scales. The authors include a reduce database model from a set of numerical experiments in the space of effective strain. Presents the first attempts towards topology optimization design of nonlinear highly heterogeneous structures Helps with simultaneous design of the topologies of both macroscopic structure and microscopic materials Helps with development of computer codes for the designs of nonlinear structures and of materials with extreme constitutive properties Focuses on the simultaneous design of both macroscopic structure and microscopic materials Includes a reduce database model from a set of numerical experiments in the space of effective strain

Book Multiphysics and Multiscale Modeling

Download or read book Multiphysics and Multiscale Modeling written by Young W. Kwon and published by CRC Press. This book was released on 2015-10-05 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written to appeal to a wide field of engineers and scientists who work on multiscale and multiphysics analysis, Multiphysics and Multiscale Modeling: Techniques and Applications is dedicated to the many computational techniques and methods used to develop man-made systems as well as understand living systems that exist in nature. Presenting a body

Book Multi scale Modelling for Structures and Composites

Download or read book Multi scale Modelling for Structures and Composites written by G. Panasenko and published by Springer Science & Business Media. This book was released on 2005-06-15 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerous applications of rod structures in civil engineering, aircraft and spacecraft confirm the importance of the topic. On the other hand the majority of books on structural mechanics use some simplifying hypotheses; these hypotheses do not allow to consider some important effects, for instance the boundary layer effects near the points of junction of rods. So the question concerning the limits of applicability of structural mechanics hypotheses and the possibilities of their refinement arise. In this connection the asymptotic analysis of equations of mathematical physics, the equations of elasticity in rod structures (without these hypotheses and simplifying assumptions being imposed) is undertaken in the present book. Moreover, a lot of modern structures are made of composite materials and therefore the material of the rods is not homogeneous. This inhomogeneity of the material can generate some unexpected effects. These effects are analysed in this book. The methods of multi-scale modelling are presented by the homogenization, multi-level asymptotic analysis and the domain decomposition. These methods give an access to a new class of hybrid models combining macroscopic description with "microscopic zooms".

Book Integrated Design of Multiscale  Multifunctional Materials and Products

Download or read book Integrated Design of Multiscale Multifunctional Materials and Products written by David L. McDowell and published by Butterworth-Heinemann. This book was released on 2009-09-30 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrated Design of Multiscale, Multifunctional Materials and Products is the first of its type to consider not only design of materials, but concurrent design of materials and products. In other words, materials are not just selected on the basis of properties, but the composition and/or microstructure iw designed to satisfy specific ranged sets of performance requirements. This book presents the motivation for pursuing concurrent design of materials and products, thoroughly discussing the details of multiscale modeling and multilevel robust design and provides details of the design methods/strategies along with selected examples of designing material attributes for specified system performance. It is intended as a monograph to serve as a foundational reference for instructors of courses at the senior and introductory graduate level in departments of materials science and engineering, mechanical engineering, aerospace engineering and civil engineering who are interested in next generation systems-based design of materials. - First of its kind to consider not only design of materials, but concurrent design of materials and products - Treatment of uncertainty via robust design of materials - Integrates the "materials by design approach" of Olson/Ques Tek LLC with the "materials selection" approach of Ashby/Granta - Distinquishes the processes of concurrent design of materials and products as an overall systems design problem from the field of multiscale modeling - Systematic mathematical algorithms and methods are introduced for robust design of materials, rather than ad hoc heuristics--it is oriented towards a true systems approach to design of materials and products