EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Multiscale Modeling of Recrystallization

Download or read book Multiscale Modeling of Recrystallization written by and published by . This book was released on 1998 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We propose a multi length scale approach to modeling recrystallization which links a dislocation model, a cell growth model and a macroscopic model. Although this methodology and linking framework will be applied to recrystallization, it is also applicable to other types of phase transformations in bulk and layered materials. Critical processes such as the dislocation structure evolution, nucleation, the evolution of crystal orientations into a preferred texture, and grain size evolution all operate at different length scales. In this paper we focus on incorporating experimental measurements of dislocation substructures, rnisorientation measurements of dislocation boundaries, and dislocation simulations into a mesoscopic model of cell growth. In particular, we show how feeding information from the dislocation model into the cell growth model can create realistic initial microstructure.

Book Multiscale Modelling and Optimisation of Materials and Structures

Download or read book Multiscale Modelling and Optimisation of Materials and Structures written by Tadeusz Burczynski and published by John Wiley & Sons. This book was released on 2022-05-19 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Addresses the very topical, crucial and original subject of parameter identification and optimization within multiscale modeling methods Multiscale Modelling and Optimization of Materials and Structures presents an important and challenging area of research that enables the design of new materials and structures with better quality, strength and performance parameters as well as the creation of reliable models that take into account structural, material and topological properties at different scales. The authors’ approach is four-fold; 1) the basic principles of micro and nano scale modeling techniques; 2) the connection of micro and/or nano scale models with macro simulation software; 3) optimization development in the framework of multiscale engineering and the solution of identification problems; 4) the computer science techniques used in this model and advice for scientists interested in developing their own models and software for multiscale analysis and optimization. The authors present several approaches such as the bridging and homogenization methods, as well as the general formulation of complex optimization and identification problems in multiscale modelling. They apply global optimization algorithms based on robust bioinspired algorithms, proposing parallel and multi-subpopulation approaches in order to speed-up computations, and discuss several numerical examples of multiscale modeling, optimization and identification of composite and functionally graded engineering materials and bone tissues. Multiscale Modelling and Optimization of Materials and Structures is thereby a valuable source of information for young scientists and students looking to develop their own models, write their own computer programs and implement them into simulation systems. Describes micro and nano scale models developed by the authors along with case studies of analysis and optimization Discusses the problems of computing costs, efficiency of information transfer, effective use of the computer memory and several other aspects of development of multiscale models Includes real physical, chemical and experimental studies with modern experimental techniques Provides a valuable source of information for young scientists and students looking to develop their own models, write their own computer programs, and implement them into simulation systems.

Book Multiscale Modeling and Control of Crystal Shape and Size Distributions  Accounting for Crystal Aggregation  Evaluation of Continuous Crystallization Systems and Run to run Control

Download or read book Multiscale Modeling and Control of Crystal Shape and Size Distributions Accounting for Crystal Aggregation Evaluation of Continuous Crystallization Systems and Run to run Control written by Joseph Sangil Kwon and published by . This book was released on 2015 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: Crystallization plays a vital role in separation and purification methods for the production of therapeutic drugs. Considering the fact that crystal size and shape distributions have a significant influence on the bioavailability of drugs such as the dissolution rate, filterability, and stability as a carrier to the target site, the production of crystals with desired size and shape distributions is of particular interest to the pharmaceutical industry. Motivated by these considerations, this dissertation focuses on the development of a multiscale modeling and simulation framework for crystallization processes that elucidates the relationship between molecular-level processes like crystal nucleation, growth and aggregation and macroscopically-observable process behavior and allows computing optimal design and operation conditions. Using protein crystallization as a model system, the multiscale framework encompasses: a) equilibrium Monte-Carlo modeling for computing solid-liquid phase diagrams and determining initial crystallization conditions that favor crystal nucleation, b) kinetic Monte-Carlo modeling for simulating crystal growth and aggregation and predicting the evolution of crystal shape distribution, and c) integrated multiscale computation linking molecular-level models and continuous-phase macroscopic equations, covering both batch and continuous crystallization systems. The multiscale model parameters and predictions are calibrated and tested with respect to available experimental data. Then, this dissertation addresses model predictive controller designs that utilize the insights and results from the multiscale modeling work and real-time measurements of solute concentration and temperature to manipulate crystallizer conditions that lead to the production of crystals with desired size and shape distributions. To enhance the ability of the predictive controller to deal with batch-to-batch parametric drifts, a common problem in industrial crystallization owing to changes, for example, in the pH level or impurity concentration in the feedstock container, a run-to-run-based model parameter estimation scheme will be presented that uses moving horizon estimation principles to update the predictive controller model parameters after each batch and leads to the consistent production of crystals of desired shape at the end of each batch.

Book High Speed Machining

Download or read book High Speed Machining written by Kapil Gupta and published by Academic Press. This book was released on 2020-01-31 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-Speed Machining covers every aspect of this important subject, from the basic mechanisms of the technology, right through to possible avenues for future research. This book will help readers choose the best method for their particular task, how to set up their equipment to reduce chatter and wear, and how to use simulation tools to model high-speed machining processes. The different applications of each technology are discussed throughout, as are the latest findings by leading researchers in this field. For any researcher looking to understand this topic, any manufacturer looking to improve performance, or any manager looking to upgrade their plant, this is the most comprehensive and authoritative guide available. - Summarizes important R&D from around the world, focusing on emerging topics like intelligent machining - Explains the latest best practice for the optimization of high-speed machining processes for greater energy efficiency and machining precision - Provides practical advice on the testing and monitoring of HSM machines, drawing on practices from leading companies

Book Multiscale Modelling of Materials

Download or read book Multiscale Modelling of Materials written by and published by . This book was released on 2000 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multiscale Modeling  Simulation and Control of Protein Crystallization Processes

Download or read book Multiscale Modeling Simulation and Control of Protein Crystallization Processes written by Michael Jeffrey Nayhouse and published by . This book was released on 2015 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Protein crystallization is a central activity in the pharmaceutical industry which is currently estimated to be over a \$1 trillion per year industry. Despite extensive experimental and theoretical work on understanding protein structure and function, there is a lack of a systematic framework that relies on fundamental understanding of the nucleation and growth mechanisms of protein crystals at the microscopic level and utilizes such information to model and operate protein batch crystallization processes at the macroscopic level. Motivated by these considerations, this dissertation is focused on developing a hierarchical and computationally tractable approach to: (a) elucidate the equilibrium fluid-fluid and fluid-solid phase diagrams of globular proteins via coarse-graining techniques, equilibrium Monte Carlo (MC) simulations, and finite-size scaling theory, (b) model crystal growth and morphology via kinetic Monte Carlo (kMC) simulations in order to deduce microscopically consistent rate laws, and (c) use these microscopic rate laws on the macroscale in order to model and control batch crystallization processes.

Book Capturing Recrystallization of Metals with a Multi scale Materials Model

Download or read book Capturing Recrystallization of Metals with a Multi scale Materials Model written by and published by . This book was released on 2000 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt: The final report for a Laboratory Directed Research and Development project entitled, ''Capturing Recrystallization of Metals in a Multiscale Materials Model'' is presented. In this project, deformation and recrystallization processes have been followed experimentally and theoretically in order to incorporate essential mechanisms from the defect (dislocation) and grain size length scales. A nonlinear rotational gradient theory has been developed which enables the incorporation of microstructural parameters. The evolution of these parameters during deformation and recrystallization has been characterized qualitatively and quantitatively, applying various electron optic techniques ranging over several length scales. The theoretical and experimental framework developed is general. It has been exemplified by an application to recrystallization in single crystals and bicrystals of aluminum. The recrystallization process has been modeled using a 3-D model for the changes in key structural parameters during recrystallization.

Book Multiscale Materials Modeling

    Book Details:
  • Author : Siegfried Schmauder
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2016-08-22
  • ISBN : 3110412519
  • Pages : 409 pages

Download or read book Multiscale Materials Modeling written by Siegfried Schmauder and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-08-22 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents current spatial and temporal multiscaling approaches of materials modeling. Recent results demonstrate the deduction of macroscopic properties at the device and component level by simulating structures and materials sequentially on atomic, micro- and mesostructural scales. The book covers precipitation strengthening and fracture processes in metallic alloys, materials that exhibit ferroelectric and magnetoelectric properties as well as biological, metal-ceramic and polymer composites. The progress which has been achieved documents the current state of art in multiscale materials modelling (MMM) on the route to full multi-scaling. Contents: Part I: Multi-time-scale and multi-length-scale simulations of precipitation and strengthening effects Linking nanoscale and macroscale Multiscale simulations on the coarsening of Cu-rich precipitates in α-Fe using kinetic Monte Carlo, Molecular Dynamics, and Phase-Field simulations Multiscale modeling predictions of age hardening curves in Al-Cu alloys Kinetic Monte Carlo modeling of shear-coupled motion of grain boundaries Product Properties of a two-phase magneto-electric composite Part II: Multiscale simulations of plastic deformation and fracture Niobium/alumina bicrystal interface fracture Atomistically informed crystal plasticity model for body-centred cubic iron FE2AT ・ finite element informed atomistic simulations Multiscale fatigue crack growth modeling for welded stiffened panels Molecular dynamics study on low temperature brittleness in tungsten single crystals Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructure Multiscale simulation of the mechanical behavior of nanoparticle-modified polyamide composites Part III: Multiscale simulations of biological and bio-inspired materials, bio-sensors and composites Multiscale Modeling of Nano-Biosensors Finite strain compressive behaviour of CNT/epoxy nanocomposites Peptide・zinc oxide interaction

Book Multiscale Modeling and Simulation of Material Phase Change Problems

Download or read book Multiscale Modeling and Simulation of Material Phase Change Problems written by Xiupeng Wei and published by . This book was released on 2010 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary objective of this work is to propose a state-of-the-art physics based multiscale modeling framework for simulating material phase change problems. Both ice melting and copper crystallization problems are selected to demonstrate this multiscale modeling and simulation. The computational methods employed in this thesis include: classical molecular dynamics, finite element method, phase-field method, and multiscale (nano/micro coupling) methods. Classical molecular dynamics (MD) is a well-known method to study material behaviors at atomic level. Due to the limit of MD, it is not realistic to provide a complete molecular model for simulations at large length and time scales. Continuum methods, including finite element methods, should be employed in this case. In this thesis, MD is employed to study phase change problems at the nanoscale. In order to study material phase change problems at the microscale, a thermal wave method one-way coupling with the MD and a phase-field method one-way coupling with MD are proposed. The thermal wave method is more accurate than classical thermal diffusion for the study of heat transfer problems especially in crystal based structures. The second model is based on the well-known phase-field method. It is modified to respond to the thermal propagation in the crystal matrix by the thermal wave method, as well as modified to respond to temperature gradients and heat fluxes by employing the Dual-Phase-Lag method. Both methods are coupled with MD to obtain realistic results. It should be noted that MD simulations can be conducted to obtain material/thermal properties for microscopic and/or macroscopic simulations for the purpose of hierarchical/sequential multiscale modeling. These material parameters include thermal conductivity, specific heat, latent heat, and relaxation time.

Book Crystal Plasticity Finite Element Methods

Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Book Recrystallization Modeling considering Second Phase Particles

Download or read book Recrystallization Modeling considering Second Phase Particles written by Carmen Schäfer and published by Cuvillier Verlag. This book was released on 2010-11-25 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recrystallization is a physical mechanism which significantly changes material texture and microstructure and thus, the physical properties of metallic materials. Since texture and microstructure can be changed within wide margins by respective processing, optimum processing conditions and best materials chemistry have to be found for low cost and high performance products. These requirements render empirical approaches ineffective and lead to a reorientation towards materials modeling- particular towards physical based modeling of recrystallization, which is topic of the present dissertation.

Book Recent Developments in the Study of Recrystallization

Download or read book Recent Developments in the Study of Recrystallization written by Peter Wilson and published by BoD – Books on Demand. This book was released on 2013-02-06 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recrystallization is a phenomenon moderately well documented in the geological and metallurgical literature. This book provides a timely overview of the latest research and methods in a variety of fields where recrystallization is studied and is an important factor. The main advantage of a new look at these fields is the rapid increase in modern techniques, such as TEM, spectrometers and modeling capabilities, all of which are providing us with far better images and analysis than ever previously possible. This book will be invaluable to a wide range of research scientists; metallurgists looking to improve properties of alloys, those interested in how the latest equipment may be used to image grains and to all those who work with frozen aqueous solutions where recrystallization may be a problem.

Book Integral Materials Modeling

Download or read book Integral Materials Modeling written by Günter Gottstein and published by John Wiley & Sons. This book was released on 2007-04-09 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adopting a holistic approach to materials simulation, this monograph covers four very important structural materials: aluminum, carbon steels, superalloys, and plastics. Following an introduction to the concept of integral modeling, the book goes on to cover a wide range of production steps and usage, including melt flow and solidification behavior, coating, shaping, thermal treatment, deep drawing, hardness and ductility, damage initiation, and deformation behavior.

Book Proceedings of the 4th World Congress on Integrated Computational Materials Engineering  ICME 2017

Download or read book Proceedings of the 4th World Congress on Integrated Computational Materials Engineering ICME 2017 written by Paul Mason and published by Springer. This book was released on 2017-04-27 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book represents a collection of papers presented at the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017), a specialty conference organized by The Minerals, Metals & Materials Society (TMS). The contributions offer topics relevant to the global advancement of ICME as an engineering discipline. Topics covered include the following:ICME Success Stories and ApplicationsVerification, Validation, Uncertainty Quantification Issues and Gap AnalysisIntegration Framework and UsageAdditive ManufacturingPhase Field ModelingMicrostructure EvolutionICME Design Tools and ApplicationMechanical Performance Using Multi-Scale Modeling

Book Material Modeling with the Visco Plastic Self Consistent  VPSC  Approach

Download or read book Material Modeling with the Visco Plastic Self Consistent VPSC Approach written by Carlos N. Tome and published by Elsevier. This book was released on 2023-05-24 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Material Modeling with the Visco-Plastic Self-Consistent (VPSC) Approach: Theory and Practical Applications provides readers with knowledge of material viscoplasticity and robust modeling approaches for predicting plastic deformation of crystal aggregates. Visco-Plastic Self-Consistent (VPSC) is the identifier of a computer code developed for the specific mechanical regime addressed (visco-plastic: VP) and the approach used (self-consistent: SC) meant to simulate large plastic deformation of aggregates, thermo-elastic material deformation, as well as predict stress-strain response, texture evolution of aggregates and stress-strain state inside grains. This approach is very versatile and able to tackle arbitrary material symmetry (cubic, hexagonal, trigonal, orthorhombic, triclinic), twinning, and multiphase aggregates. It accounts for hardening, reorientation and shape change of individual grains, and can be applied to the deformation of metals, inter-metallics and geologic aggregates. Readers will have access to a companion website where they can download code and modify its input/output or add subroutines covering specific simulation research needs. - Highlights a modeling approach that allows readers to accurately predict stress-strain response, texture evolution of aggregates, and internal stress states inside grains while also accounting for hardening, reorientation and shape change of individual grains - Features modeling techniques that can be applied to the deformation of metals, inter-metallics and geologic aggregates - Covers the theoretical aspects of homogeneous effective medium models as they apply to the simulation of plasticity and elasticity - Provides several practical examples and applications of materials of different symmetry subjected to different deformation conditions

Book Emergence in Context

    Book Details:
  • Author : Robert C. Bishop
  • Publisher : Oxford University Press
  • Release : 2022
  • ISBN : 0192849786
  • Pages : 401 pages

Download or read book Emergence in Context written by Robert C. Bishop and published by Oxford University Press. This book was released on 2022 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Science, philosophy of science, and metaphysics have long been concerned with the question of how novel things emerge. How can order come out of disorder? This book introduces a new account, contextual emergence, seeking to answer such questions."--Back cover.

Book Material Forming

Download or read book Material Forming written by Anna Carla Araujo and published by Materials Research Forum LLC. This book was released on 2024-05-20 with total page 2957 pages. Available in PDF, EPUB and Kindle. Book excerpt: These ESAFORM 2024 conference proceedings cover a wide range of topics: Additive manufacturing; Composites forming processes; Extrusion and drawing; Forging and rolling; Formability of metallic materials; Friction and wear in metal forming; Incremental and sheet metal forming; Innovative joining by forming technologies; Optimization and inverse analysis in forming; Machining, Cutting and severe plastic deformation processes; Material behavior modelling; New and advanced numerical strategies for material forming; Non-conventional processes; Polymer processing and thermomechanical properties; Sustainability on material forming. Keywords: WAAM Technology, Fused deposition Modeling (FDM), Fiber Composite Printers, Ultrasonic Powder Atomization, Finite Element Modeling (FEM), Laser Powder Bed Fusion (L-PBF), Rapid Prototyping in Additive Manufacturing, Directed Energy Deposition (DED), GTAW Droplet Deposition, Deep Learning, Thermoplastic Pultrusion, Textile Reinforcements, Thermoforming Simulation, New Sustainable Materials, Non-Crimp Fabrics, CFRP Scraps, PEEK Composites, Thermoplastic Sheets, Flax/PP Composites.