Download or read book Multiscale Modeling of Pedestrian Dynamics written by Emiliano Cristiani and published by Springer. This book was released on 2014-09-12 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents mathematical models and numerical simulations of crowd dynamics. The core topic is the development of a new multiscale paradigm, which bridges the microscopic and macroscopic scales taking the most from each of them for capturing the relevant clues of complexity of crowds. The background idea is indeed that most of the complex trends exhibited by crowds are due to an intrinsic interplay between individual and collective behaviors. The modeling approach promoted in this book pursues actively this intuition and profits from it for designing general mathematical structures susceptible of application also in fields different from the inspiring original one. The book considers also the two most traditional points of view: the microscopic one, in which pedestrians are tracked individually and the macroscopic one, in which pedestrians are assimilated to a continuum. Selected existing models are critically analyzed. The work is addressed to researchers and graduate students.
Download or read book Crowd Dynamics Volume 2 written by Livio Gibelli and published by Springer Nature. This book was released on 2020-10-23 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume explores innovative research in the modeling, simulation, and control of crowd dynamics. Chapter authors approach the topic from the perspectives of mathematics, physics, engineering, and psychology, providing a comprehensive overview of the work carried out in this challenging interdisciplinary research field. After providing a critical analysis of the current state of the field and an overview of the current research perspectives, chapters focus on three main research areas: pedestrian interactions, crowd control, and multiscale modeling. Specific topics covered in this volume include: crowd dynamics through conservation laws recent developments in controlled crowd dynamics mixed traffic modeling insights and applications from crowd psychology Crowd Dynamics, Volume 2 is ideal for mathematicians, engineers, physicists, and other researchers working in the rapidly growing field of modeling and simulation of human crowds.
Download or read book Crowd Dynamics Volume 3 written by Nicola Bellomo and published by Springer Nature. This book was released on 2022-02-28 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume explores innovative research in the modeling, simulation, and control of crowd dynamics. Chapter authors approach the topic from the perspectives of mathematics, physics, engineering, and psychology, providing a comprehensive overview of the work carried out in this challenging interdisciplinary research field. In light of the recent COVID-19 pandemic, special consideration is given to applications of crowd dynamics to the prevention of the spreading of contagious diseases. Some of the specific topics covered in this volume include: - Impact of physical distancing on the evacuation of crowds- Generalized solutions of opinion dynamics models- Crowd dynamics coupled with models for infectious disease spreading- Optimized strategies for leaders in controlling the dynamics of a crowd Crowd Dynamics, Volume 3 is ideal for mathematicians, engineers, physicists, and other researchers working in the rapidly growing field of modeling and simulation of human crowds.
Download or read book Crowd Dynamics Volume 4 written by Nicola Bellomo and published by Springer Nature. This book was released on 2023-12-13 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume explores innovative research in the modeling, simulation, and control of crowd dynamics. Chapter authors approach the topic from the perspectives of mathematics, physics, engineering, and psychology, providing a comprehensive overview of the work carried out in this challenging interdisciplinary research field. The volume begins with an overview of analytical problems related to crowd modeling. Attention is then given to the importance of considering the social and psychological factors that influence crowd behavior – such as emotions, communication, and decision-making processes – in order to create reliable models. Finally, specific features of crowd behavior are explored, including single-file traffic, passenger movement, modeling multiple groups in crowds, and the interplay between crowd dynamics and the spread of disease. Crowd Dynamics, Volume 4 is ideal for mathematicians, engineers, physicists, and other researchers working in the rapidly growing field of modeling and simulation of human crowds.
Download or read book Predicting Pandemics in a Globally Connected World Volume 1 written by Nicola Bellomo and published by Springer Nature. This book was released on 2022-09-22 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume investigates several mathematical techniques for the modeling and simulation of viral pandemics, with a special focus on COVID-19. Modeling a pandemic requires an interdisciplinary approach with other fields such as epidemiology, virology, immunology, and biology in general. Spatial dynamics and interactions are also important features to be considered, and a multiscale framework is needed at the level of individuals and the level of virus particles and the immune system. Chapters in this volume address these items, as well as offer perspectives for the future.
Download or read book Crowd Dynamics Volume 1 written by Livio Gibelli and published by Springer. This book was released on 2019-01-22 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume explores the complex problems that arise in the modeling and simulation of crowd dynamics in order to present the state-of-the-art of this emerging field and contribute to future research activities. Experts in various areas apply their unique perspectives to specific aspects of crowd dynamics, covering the topic from multiple angles. These include a demonstration of how virtual reality may solve dilemmas in collecting empirical data; a detailed study on pedestrian movement in smoke-filled environments; a presentation of one-dimensional conservation laws with point constraints on the flux; a collection of new ideas on the modeling of crowd dynamics at the microscopic scale; and others. Applied mathematicians interested in crowd dynamics, pedestrian movement, traffic flow modeling, urban planning, and other topics will find this volume a valuable resource. Additionally, researchers in social psychology, architecture, and engineering may find this information relevant to their work.
Download or read book Advances in Computational Fluid Structure Interaction and Flow Simulation written by Yuri Bazilevs and published by Birkhäuser. This book was released on 2016-10-04 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume celebrates the work of Tayfun E. Tezduyar on the occasion of his 60th birthday. The articles it contains were born out of the Advances in Computational Fluid-Structure Interaction and Flow Simulation (AFSI 2014) conference, also dedicated to Prof. Tezduyar and held at Waseda University in Tokyo, Japan on March 19-21, 2014. The contributing authors represent a group of international experts in the field who discuss recent trends and new directions in computational fluid dynamics (CFD) and fluid-structure interaction (FSI). Organized into seven distinct parts arranged by thematic topics, the papers included cover basic methods and applications of CFD, flows with moving boundaries and interfaces, phase-field modeling, computer science and high-performance computing (HPC) aspects of flow simulation, mathematical methods, biomedical applications, and FSI. Researchers, practitioners, and advanced graduate students working on CFD, FSI, and related topics will find this collection to be a definitive and valuable resource.
Download or read book Collective Dynamics from Bacteria to Crowds written by Adrian Muntean and published by Springer Science & Business Media. This book was released on 2014-03-18 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale models in social applications combine mean-field and kinetic equations with either microscopic or macroscopic level descriptions. In this book the reader will find not only a wide spectrum of multiscale analysis results (like convergence proofs), but also practically important information such as derivations of mean-field equations, methods to handle hard contacts numerically, to model group behavior, to quantitative estimate microscopic/macroscopic segregation of competing species, to quantitative understand the limits of validity of mass-action kinetics for simple reactions.
Download or read book Kinetic Theory and Swarming Tools to Modeling Complex Systems Symmetry problems in the Science of Living Systems written by Nicola Bellomo and published by MDPI. This book was released on 2020-05-29 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: This MPDI book comprises a number of selected contributions to a Special Issue devoted to the modeling and simulation of living systems based on developments in kinetic mathematical tools. The focus is on a fascinating research field which cannot be tackled by the approach of the so-called hard sciences—specifically mathematics—without the invention of new methods in view of a new mathematical theory. The contents proposed by eight contributions witness the growing interest of scientists this field. The first contribution is an editorial paper which presents the motivations for studying the mathematics and physics of living systems within the framework an interdisciplinary approach, where mathematics and physics interact with specific fields of the class of systems object of modeling and simulations. The different contributions refer to economy, collective learning, cell motion, vehicular traffic, crowd dynamics, and social swarms. The key problem towards modeling consists in capturing the complexity features of living systems. All articles refer to large systems of interaction living entities and follow, towards modeling, a common rationale which consists firstly in representing the system by a probability distribution over the microscopic state of the said entities, secondly, in deriving a general mathematical structure deemed to provide the conceptual basis for the derivation of models and, finally, in implementing the said structure by models of interactions at the microscopic scale. Therefore, the modeling approach transfers the dynamics at the low scale to collective behaviors. Interactions are modeled by theoretical tools of stochastic game theory. Overall, the interested reader will find, in the contents, a forward look comprising various research perspectives and issues, followed by hints on to tackle these.
Download or read book Multiscale Modelling Methods for Applications in Materials Science written by Ivan Kondov and published by Forschungszentrum Jülich. This book was released on 2013 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Integrated Earthquake Simulation written by M. Hori and published by CRC Press. This book was released on 2022-09-26 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrated earthquake simulation (IES) is a new method for evaluating earthquake hazards and disasters induced in cities and urban areas. It utilises a sequence of numerical simulations of such aspects as earthquake wave propagation, ground motion amplification, structural seismic response, and mass evacuation. This book covers the basics of numerical analysis methods of solving wave equations, analyzing structural responses, and developing agent models for mass evaluation, which are implemented in IES. IES makes use of Monte-Carlo simulation, which takes account of the effects of uncertainties related to earthquake scenarios and the modeling of structures both above and below ground, and facilitates a better estimate of overall earthquake and disaster hazard. It also presents the recent achievement of enhancing IES with high-performance computing capability that can make use of automated models which employ various numerical analysis methods. Detailed examples of IES for the Tokyo Metropolis Earthquake and the Nankai Trough Earthquake are given, which use large scale analysis models of actual cities and urban areas.
Download or read book Crowd Dynamics by Kinetic Theory Modeling written by Bouchra Aylaj and published by Springer Nature. This book was released on 2022-06-01 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contents of this brief Lecture Note are devoted to modeling, simulations, and applications with the aim of proposing a unified multiscale approach accounting for the physics and the psychology of people in crowds. The modeling approach is based on the mathematical theory of active particles, with the goal of contributing to safety problems of interest for the well-being of our society, for instance, by supporting crisis management in critical situations such as sudden evacuation dynamics induced through complex venues by incidents.
Download or read book Modeling Design and Simulation of Systems written by Mohamed Sultan Mohamed Ali and published by Springer. This book was released on 2017-08-24 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set CCIS 751 and CCIS 752 constitutes the proceedings of the 17th Asia Simulation Conference, AsiaSim 2017, held in Malacca, Malaysia, in August/September 2017. The 124 revised full papers presented in this two-volume set were carefully reviewed and selected from 267 submissions. The papers contained in these proceedings address challenging issues in modeling and simulation in various fields such as embedded systems; symbiotic simulation; agent-based simulation; parallel and distributed simulation; high performance computing; biomedical engineering; big data; energy, society and economics; medical processes; simulation language and software; visualization; virtual reality; modeling and Simulation for IoT; machine learning; as well as the fundamentals and applications of computing.
Download or read book Pedestrian and Evacuation Dynamics written by Richard D. Peacock and published by Springer Science & Business Media. This book was released on 2011-06-29 with total page 862 pages. Available in PDF, EPUB and Kindle. Book excerpt: An aging population, increasing obesity and more people with mobility impairments are bringing new challenges to the management of routine and emergency people movement in many countries. These population challenges, coupled with the innovative designs being suggested for both the built environment and other commonly used structures (e.g., transportation systems) and the increasingly complex incident scenarios of fire, terrorism, and large-scale community disasters, provide even greater challenges to population management and safety. Pedestrian and Evacuation Dynamics, an edited volume, is based on the Pedestrian and Evacuation Dynamics (PED) 5th International 2010 conference, March 8th-10th 2010, located at the National Institute of Standards and Technology, Gaithersburg, MD, USA. This volume addresses both pedestrian and evacuation dynamics and associated human behavior to provide answers for policy makers, designers, and emergency management to help solve real world problems in this rapidly developing field. Data collection, analysis, and model development of people movement and behavior during nonemergency and emergency situations will be covered as well.
Download or read book Formal Methods in Architecture written by Plácido Lizancos Mora and published by Springer Nature. This book was released on 2023-09-02 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises the select proceedings of the 6th International Symposium on Formal Methods in Architecture (6FMA), A Coruña 2022. The contents focus on the use of methodologies, especially those that have witnessed recent developments stemming from mathematical and computer sciences and are developed in a collaborative way with architecture and related fields. This book constitutes a contribution to the debate and to the introduction of new methodologies and tools in the mentioned fields that derive from the application of formal methods in the creation of new explicit languages for problem-solving in architecture and urbanism. Some of the themes in the book are CAD and BIM, mixed realities, photogrammetry and 3D scan, architectural design automation, urban and building performance analysis, SCAVA-space configuration, accessibility and visibility analysis. This book proves a valuable resource for those in academia and industry.
Download or read book A Quest Towards a Mathematical Theory of Living Systems written by Nicola Bellomo and published by Birkhäuser. This book was released on 2017-07-13 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph aims to lay the groundwork for the design of a unified mathematical approach to the modeling and analysis of large, complex systems composed of interacting living things. Drawing on twenty years of research in various scientific fields, it explores how mathematical kinetic theory and evolutionary game theory can be used to understand the complex interplay between mathematical sciences and the dynamics of living systems. The authors hope this will contribute to the development of new tools and strategies, if not a new mathematical theory. The first chapter discusses the main features of living systems and outlines a strategy for their modeling. The following chapters then explore some of the methods needed to potentially achieve this in practice. Chapter Two provides a brief introduction to the mathematical kinetic theory of classical particles, with special emphasis on the Boltzmann equation; the Enskog equation, mean field models, and Monte Carlo methods are also briefly covered. Chapter Three uses concepts from evolutionary game theory to derive mathematical structures that are able to capture the complexity features of interactions within living systems. The book then shifts to exploring the relevant applications of these methods that can potentially be used to derive specific, usable models. The modeling of social systems in various contexts is the subject of Chapter Five, and an overview of modeling crowd dynamics is given in Chapter Six, demonstrating how this approach can be used to model the dynamics of multicellular systems. The final chapter considers some additional applications before presenting an overview of open problems. The authors then offer their own speculations on the conceptual paths that may lead to a mathematical theory of living systems hoping to motivate future research activity in the field. A truly unique contribution to the existing literature, A Quest Toward a Mathematical Theory of Living Systems is an important book that will no doubt have a significant influence on the future directions of the field. It will be of interest to mathematical biologists, systems biologists, biophysicists, and other researchers working on understanding the complexities of living systems.
Download or read book Fractional Order Crowd Dynamics written by Kecai Cao and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-06-11 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book illustrates the application of fractional calculus in crowd dynamics via modeling and control groups of pedestrians. Decision-making processes, conservation laws of mass/momentum, and micro-macro models are employed to describe system dynamics while cooperative movements in micro scale, and fractional diffusion in macro scale are studied to control the group of pedestrians. Obtained work is included in the Intelligent Evacuation Systems that is used for modeling and to control crowds of pedestrians. With practical issues considered, this book is of interests to mathematicians, physicists, and engineers.