EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Multiscale Modeling of Disorder in Solid state Battery Materials

Download or read book Multiscale Modeling of Disorder in Solid state Battery Materials written by Hendrik Helge Heenen and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage

Download or read book Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage written by Alejandro A. Franco and published by Springer. This book was released on 2015-11-12 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation. In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials’ atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.

Book Modeling and Design of All Solid State Batteries

Download or read book Modeling and Design of All Solid State Batteries written by Hanmei Tang and published by . This book was released on 2019 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: All-solid-state batteries show its great potential for being the next-generation source of clean energy barely with safety issues. While current research progress suggests the bottleneck of commercialization of all-solid-state batteries is the high resistivity at the electrode/SE interfaces. The aim of this thesis is to demonstrate how computational efforts can help understand and tackle the interface issues. The content comprises the following three projects: the methodology development (Chapter 2), the optimization of bulk materials (Chapter 3), and combined experimental and theoretical investigation into reactive interfaces (Chapter 4 & 5). In the first project, we aimed to develop and improve the computational workflow in material science research, especially those related to the interfaces. In the first part of this project, the Nudged Elastic Band (NEB) workflow has been developed with high automation and flexibility; and in the second part, an extension to a traditional molecular dynamics workflow specifically for tracking interface reactions has been implemented. The intrinsic properties of bulk materials are important to the interfacial properties and, thus, the performance of the full-cell battery. In the second project, we illustrated a computational aided design of bulk material, the Mg-doped Na3V2(PO4)3 cathode Na3+xV2-xMgx(PO4)3/C. The third project includes chapters 4 & 5, which are interfacial investigations on Na-ion and Li-ion, respectively. In chapter 4, we have demonstrated how thermodynamic approximations based on assumptions of fast alkali diffusion and multi-species equilibrium can be used to effectively screen combinations of Na-ion electrodes, solid electrolytes and buffer oxides for electrochemical and chemical compatibility. In addition to the thermodynamic approximation, ab initio molecular dynamics simulations of the NaCoO 2 /Na 3 PS 4 interface model predict that the formation of [SO4]2- -containing compounds and Na3P are kinetically favored over the formation of [PO4]3- -containing compounds, which has been validated through XPS recently. Chapter 5 investigate the source of reactivity between the sulfide solid electrolyte Li6PS5Cl (LPSCl) and the high-voltage cathode LiNi0.85Co0.1Al0.05O2 (NCA). And both experimental and computational results demonstrated improved stability between NCA and LPSCl after incorporation of the LiNbO 3 coating.

Book Multiscale Modelling and Simulation

Download or read book Multiscale Modelling and Simulation written by Sabine Attinger and published by Springer Science & Business Media. This book was released on 2004-07-12 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: In August 2003, ETHZ Computational Laboratory (CoLab), together with the Swiss Center for Scientific Computing in Manno and the Università della Svizzera Italiana (USI), organized the Summer School in "Multiscale Modelling and Simulation" in Lugano, Switzerland. This summer school brought together experts in different disciplines to exchange ideas on how to link methodologies on different scales. Relevant examples of practical interest include: structural analysis of materials, flow through porous media, turbulent transport in high Reynolds number flows, large-scale molecular dynamic simulations, ab-initio physics and chemistry, and a multitude of others. Though multiple scale models are not new, the topic has recently taken on a new sense of urgency. A number of hybrid approaches are now created in which ideas coming from distinct disciplines or modelling approaches are unified to produce new and computationally efficient techniques.

Book Multiscale Modeling  Reformulation  and Efficient Simulation of Lithium ion Batteries

Download or read book Multiscale Modeling Reformulation and Efficient Simulation of Lithium ion Batteries written by Paul Wesley Clairday Northrop and published by . This book was released on 2014 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lithium-ion batteries are ubiquitous in modern society, ranging from relatively low-power applications, such as cell phones, to very high demand applications such as electric vehicles and grid storage. The higher power and energy density of lithium-ion batteries compared to other forms of electrochemical energy storage makes them very popular in such a wide range of applications. In order to engineer improved battery design and develop better control schemes, it is important to understand internal and external battery behavior under a variety of possible operating conditions. This can be achieved using physical experiments, but those can be costly and time consuming, especially for life-studies which can take years to perform. Here using mathematical models based on porous electrode theory to study the internal behavior of lithium-ion batteries is examined. As the physical phenomena which govern battery performance are described using several nonlinear partial differential equations, simulating battery models can quickly become computationally expensive. Thus, much of this work focuses on reformulating the battery model to improve simulation efficiency, allowing for use to solve problems which require many iterations to converge (e.g. optimization), or in applications which have limited computational resources (e.g. control). Computational time is improved while maintaining accuracy by using a coordinate transformation and orthogonal collocation to reduce the number of equations which must be solved using the method of lines. Orthogonal collocation is a spectral method which approximates all dependent variables as a series solution of trial functions. This approach discretizes the spatial derivatives with higher order accuracy than standard finite difference approach. The coefficients are determined by requiring the governing equation be satisfied at specified collocation points, resulting in a system of differential algebraic equations (DAEs) which must be solved with time as the only differential variable. The system of DAEs can be solved using standard time-adaptive integrating solvers. The error and simulation time of the battery model of orthogonal collocation is analyzed. The improved computational efficiency allows for more physical phenomena to be considered in the reformulated model. Lithium-ion batteries exposed to high temperatures can lead to internal damage and capacity fade. In extreme cases this can lead to thermal runaway, a dangerous scenario in which energy is rapidly released. In the other end of the temperature spectrum, low temperatures can significantly impede performance by increasing diffusion resistance. Although accounting for thermal effects increases the computational cost, the model reformulation allows for these important phenomena to be considered in single cell as well as 2D and multicell stack battery models. The growth of the solid electrolyte interface (SEI) layer contributes to capacity fade by means of a side reaction which removes lithium from the system irreversibly as well as increasing the resistance of the transfer lithium-ion from the electrolyte to the active material. As the reaction kinetics are not well understood, several proposed mechanisms are considered and implemented into the continuum reformulated model. The effects of SEI layer growth on a lithium-ion cell over 10,000 cycles is simulated and analyzed. Furthermore, a kinetic Monte Carlo model is developed and implemented to study the heterogeneous growth of the solid electrolyte layer. This is a stochastic approach which considers lithium-ion diffusion, intercalation, and side reactions. As millions of individual time steps may be performed for a single cycle, it is very computationally expensive, but allows for simulation of surface phenomena which are ignored in continuum models.

Book Electronic Structure of Materials

Download or read book Electronic Structure of Materials written by Rajendra Prasad and published by Taylor & Francis. This book was released on 2013-07-23 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most textbooks in the field are either too advanced for students or don't adequately cover current research topics. Bridging this gap, Electronic Structure of Materials helps advanced undergraduate and graduate students understand electronic structure methods and enables them to use these techniques in their work.Developed from the author's lecture

Book Progress in Industrial Mathematics  Success Stories

Download or read book Progress in Industrial Mathematics Success Stories written by Manuel Cruz and published by Springer Nature. This book was released on 2021-02-07 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a panorama about the recent progress of industrial mathematics from the point of view of both industrials and researchers. The chapters correspond to a selection of the contributions presented in the "Industry Day" and in the Minisymposium "EU - MATHS - IN: Success Stories of Applications of Mathematics to Industry" organized in the framework of the International Conference ICIAM 2019 held in Valencia (Spain) on July 15-19, 2019. In the Industry Day, included for the first time in this series of Conferences, representatives of companies from different countries and several sectors presented their view about the benefits regarding the usage of mathematical tools and/or collaboration with mathematicians. The contributions of this special session were addressed to industry people. Minisymposium contributions detailed some collaborations between mathematicians and industrials that led to real benefits in several European companies. All the speakers were affiliated in some of the European National Networks that constitute the European Service Network of Mathematics for Industry and Innovation (EU-MATHS-IN).

Book Classical And Quantum Dynamics In Condensed Phase Simulations  Proceedings Of The International School Of Physics

Download or read book Classical And Quantum Dynamics In Condensed Phase Simulations Proceedings Of The International School Of Physics written by Bruce J Berne and published by World Scientific. This book was released on 1998-06-17 with total page 881 pages. Available in PDF, EPUB and Kindle. Book excerpt: The school held at Villa Marigola, Lerici, Italy, in July 1997 was very much an educational experiment aimed not just at teaching a new generation of students the latest developments in computer simulation methods and theory, but also at bringing together researchers from the condensed matter computer simulation community, the biophysical chemistry community and the quantum dynamics community to confront the shared problem: the development of methods to treat the dynamics of quantum condensed phase systems.This volume collects the lectures delivered there. Due to the focus of the school, the contributions divide along natural lines into two broad groups: (1) the most sophisticated forms of the art of computer simulation, including biased phase space sampling schemes, methods which address the multiplicity of time scales in condensed phase problems, and static equilibrium methods for treating quantum systems; (2) the contributions on quantum dynamics, including methods for mixing quantum and classical dynamics in condensed phase simulations and methods capable of treating all degrees of freedom quantum-mechanically.

Book Springer Handbook of Electrochemical Energy

Download or read book Springer Handbook of Electrochemical Energy written by Cornelia Breitkopf and published by Springer. This book was released on 2016-12-05 with total page 1019 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive handbook covers all fundamentals of electrochemistry for contemporary applications. It provides a rich presentation of related topics of electrochemistry with a clear focus on energy technologies. It covers all aspects of electrochemistry starting with theoretical concepts and basic laws of thermodynamics, non-equilibrium thermodynamics and multiscale modeling. It further gathers the basic experimental methods such as potentiometry, reference electrodes, ion-sensitive electrodes, voltammetry and amperometry. The contents cover subjects related to mass transport, the electric double layer, ohmic losses and experimentation affecting electrochemical reactions. These aspects of electrochemistry are especially examined in view of specific energy technologies including batteries, polymer electrolyte and biological fuel cells, electrochemical capacitors, electrochemical hydrogen production and photoelectrochemistry. Organized in six parts, the overall complexity of electrochemistry is presented and makes this handbook an authoritative reference and definitive source for advanced students, professionals and scientists particularly interested in industrial and energy applications.

Book Handbook of Materials Modeling

Download or read book Handbook of Materials Modeling written by Sidney Yip and published by Springer Science & Business Media. This book was released on 2007-11-17 with total page 2903 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.

Book Atomistic Simulation of Anistropic Crystal Structures at Nanoscale

Download or read book Atomistic Simulation of Anistropic Crystal Structures at Nanoscale written by Jia Fu and published by BoD – Books on Demand. This book was released on 2019-05-10 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale simulations of atomistic/continuum coupling in computational materials science, where the scale expands from macro-/micro- to nanoscale, has become a hot research topic. These small units, usually nanostructures, are commonly anisotropic. The development of molecular modeling tools to describe and predict the mechanical properties of structures reveals an undeniable practical importance. Typical anisotropic structures (e.g. cubic, hexagonal, monoclinic) using DFT, MD, and atomic finite element methods are especially interesting, according to the modeling requirement of upscaling structures. It therefore connects nanoscale modeling and continuous patterns of deformation behavior by identifying relevant parameters from smaller to larger scales. These methodologies have the prospect of significant applications. I would like to recommend this book to both beginners and experienced researchers.

Book The Gaussian Approximation Potential

Download or read book The Gaussian Approximation Potential written by Albert Bartók-Pártay and published by Springer Science & Business Media. This book was released on 2010-07-27 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulation of materials at the atomistic level is an important tool in studying microscopic structures and processes. The atomic interactions necessary for the simulations are correctly described by Quantum Mechanics, but the size of systems and the length of processes that can be modelled are still limited. The framework of Gaussian Approximation Potentials that is developed in this thesis allows us to generate interatomic potentials automatically, based on quantum mechanical data. The resulting potentials offer several orders of magnitude faster computations, while maintaining quantum mechanical accuracy. The method has already been successfully applied for semiconductors and metals.

Book Theory of Defects in Semiconductors

Download or read book Theory of Defects in Semiconductors written by David A. Drabold and published by Springer Science & Business Media. This book was released on 2007 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor science and technology is the art of defect engineering. The theoretical modeling of defects has improved dramatically over the past decade. These tools are now applied to a wide range of materials issues: quantum dots, buckyballs, spintronics, interfaces, amorphous systems, and many others. This volume presents a coherent and detailed description of the field, and brings together leaders in theoretical research. Today's state-of-the-art, as well as tomorrow’s tools, are discussed: the supercell-pseudopotential method, the GW formalism,Quantum Monte Carlo, learn-on-the-fly molecular dynamics, finite-temperature treatments, etc. A wealth of applications are included, from point defects to wafer bonding or the propagation of dislocation.

Book Lithium ion Batteries

Download or read book Lithium ion Batteries written by and published by . This book was released on 2019 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is the first machine-generated scientific book in chemistry published by Springer Nature. Serving as an innovative prototype defining the current status of the technology, it also provides an overview about the latest trends of lithium-ion batteries research. This book explores future ways of informing researchers and professionals. State-of-the-art computer algorithms were applied to: select relevant sources from Springer Nature publications, arrange these in a topical order, and provide succinct summaries of these articles. The result is a cross-corpora auto-summarization of current texts, organized by means of a similarity-based clustering routine in coherent chapters and sections. This book summarizes more than 150 research articles published from 2016 to 2018 and provides an informative and concise overview of recent research into anode and cathode materials as well as further aspects such as separators, polymer electrolytes, thermal behavior and modelling. With this prototype, Springer Nature has begun an innovative journey to explore the field of machine-generated content and to find answers to the manifold questions on this fascinating topic. Therefore it was intentionally decided not to manually polish or copy-edit any of the texts so as to highlight the current status and remaining boundaries of machine-generated content. Our goal is to initiate a broad discussion, together with the research community and domain experts, about the future opportunities, challenges and limitations of this technology."--Publisher's website.

Book Introduction to Genetic Algorithms

Download or read book Introduction to Genetic Algorithms written by S.N. Sivanandam and published by Springer Science & Business Media. This book was released on 2007-10-24 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a basic introduction to genetic algorithms. It provides a detailed explanation of genetic algorithm concepts and examines numerous genetic algorithm optimization problems. In addition, the book presents implementation of optimization problems using C and C++ as well as simulated solutions for genetic algorithm problems using MATLAB 7.0. It also includes application case studies on genetic algorithms in emerging fields.

Book Crystallography and Crystal Defects

Download or read book Crystallography and Crystal Defects written by Anthony Kelly and published by John Wiley & Sons. This book was released on 2000-04-17 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Crystallography and Crystal Defects Revised Edition A. Kelly, Churchill College, Cambridge, UK G. W. Groves, Exeter College, Oxford, UK and P. Kidd, Queen Mary and Westfield College, University of London, UK The concepts of crystallography are introduced here in such a way that the physical properties of crystals, including their mechanical behaviour, can be better understood and quantified. A unique approach to the treatment of crystals and their defects is taken in that the often separate disciplines of crystallography, tensor analysis, elasticity and dislocation theory are combined in such a way as to equip materials scientists with knowledge of all the basic principles required to interpret data from their experiments. This is a revised and updated version of the widely acclaimed book by Kelly and Groves that was first published nearly thirty years ago. The material remains timely and relevant and the first edition still holds an unrivalled position at the core of the teaching of crystallography and crystal defects today. Undergraduate readers will acquire a rigorous grounding, from first principles, in the crystal classes and the concept of a lattice and its defects and their descriptions using vectors. Researchers will find here all the theorems of crystal structure upon which to base their work and the equations necessary for calculating interplanar spacings, transformation of indices and manipulations involving the stereographic projection and transformations of tensors and matrices.

Book Na ion Batteries

    Book Details:
  • Author :
  • Publisher : John Wiley & Sons
  • Release : 2021-05-11
  • ISBN : 1789450136
  • Pages : 386 pages

Download or read book Na ion Batteries written by and published by John Wiley & Sons. This book was released on 2021-05-11 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers both the fundamental and applied aspects of advanced Na-ion batteries (NIB) which have proven to be a potential challenger to Li-ion batteries. Both the chemistry and design of positive and negative electrode materials are examined. In NIB, the electrolyte is also a crucial part of the batteries and the recent research, showing a possible alternative to classical electrolytes – with the development of ionic liquid-based electrolytes – is also explored. Cycling performance in NIB is also strongly associated with the quality of the electrode-electrolyte interface, where electrolyte degradation takes place; thus, Na-ion Batteries details the recent achievements in furthering knowledge of this interface. Finally, as the ultimate goal is commercialization of this new electrical storage technology, the last chapters are dedicated to the industrial point of view, given by two startup companies, who developed two different NIB chemistries for complementary applications and markets.