EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Multiscale Formulation for Heterogeneous Materials

Download or read book Multiscale Formulation for Heterogeneous Materials written by Shafigh Mehraeen and published by . This book was released on 2009 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multiscale Modeling of Heterogeneous Structures

Download or read book Multiscale Modeling of Heterogeneous Structures written by Jurica Sorić and published by Springer. This book was released on 2017-11-30 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of multiscale approaches and homogenization procedures as well as damage evaluation and crack initiation, and addresses recent advances in the analysis and discretization of heterogeneous materials. It also highlights the state of the art in this research area with respect to different computational methods, software development and applications to engineering structures. The first part focuses on defects in composite materials including their numerical and experimental investigations; elastic as well as elastoplastic constitutive models are considered, where the modeling has been performed at macro- and micro levels. The second part is devoted to novel computational schemes applied on different scales and discusses the validation of numerical results. The third part discusses gradient enhanced modeling, in particular quasi-brittle and ductile damage, using the gradient enhanced approach. The final part addresses thermoplasticity, solid-liquid mixtures and ferroelectric models. The contents are based on the international workshop “Multiscale Modeling of Heterogeneous Structures” (MUMO 2016), held in Dubrovnik, Croatia in September 2016.

Book Multiscale Modeling in Solid Mechanics

Download or read book Multiscale Modeling in Solid Mechanics written by Ugo Galvanetto and published by Imperial College Press. This book was released on 2010 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique volume presents the state of the art in the field of multiscale modeling in solid mechanics, with particular emphasis on computational approaches. For the first time, contributions from both leading experts in the field and younger promising researchers are combined to give a comprehensive description of the recently proposed techniques and the engineering problems tackled using these techniques. The book begins with a detailed introduction to the theories on which different multiscale approaches are based, with regards to linear Homogenisation as well as various nonlinear approaches. It then presents advanced applications of multiscale approaches applied to nonlinear mechanical problems. Finally, the novel topic of materials with self-similar structure is discussed. Sample Chapter(s). Chapter 1: Computational Homogenisation for Non-Linear Heterogeneous Solids (808 KB). Contents: Computational Homogenisation for Non-Linear Heterogeneous Solids (V G Kouznetsova et al.); Two-Scale Asymptotic Homogenisation-Based Finite Element Analysis of Composite Materials (Q-Z Xiao & B L Karihaloo); Multi-Scale Boundary Element Modelling of Material Degradation and Fracture (G K Sfantos & M H Aliabadi); Non-Uniform Transformation Field Analysis: A Reduced Model for Multiscale Non-Linear Problems in Solid Mechanics (J-C Michel & P Suquet); Multiscale Approach for the Thermomechanical Analysis of Hierarchical Structures (M J Lefik et al.); Recent Advances in Masonry Modelling: Micro-Modelling and Homogenisation (P B Louren o); Mechanics of Materials with Self-Similar Hierarchical Microstructure (R C Picu & M A Soare). Readership: Researchers and academics in the field of heterogeneous materials and mechanical engineering; professionals in aeronautical engineering and materials science.

Book Integrated Design of Multiscale  Multifunctional Materials and Products

Download or read book Integrated Design of Multiscale Multifunctional Materials and Products written by David L. McDowell and published by Butterworth-Heinemann. This book was released on 2009-09-30 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrated Design of Multiscale, Multifunctional Materials and Products is the first of its type to consider not only design of materials, but concurrent design of materials and products. In other words, materials are not just selected on the basis of properties, but the composition and/or microstructure iw designed to satisfy specific ranged sets of performance requirements. This book presents the motivation for pursuing concurrent design of materials and products, thoroughly discussing the details of multiscale modeling and multilevel robust design and provides details of the design methods/strategies along with selected examples of designing material attributes for specified system performance. It is intended as a monograph to serve as a foundational reference for instructors of courses at the senior and introductory graduate level in departments of materials science and engineering, mechanical engineering, aerospace engineering and civil engineering who are interested in next generation systems-based design of materials. First of its kind to consider not only design of materials, but concurrent design of materials and products Treatment of uncertainty via robust design of materials Integrates the "materials by design approach" of Olson/Ques Tek LLC with the "materials selection" approach of Ashby/Granta Distinquishes the processes of concurrent design of materials and products as an overall systems design problem from the field of multiscale modeling Systematic mathematical algorithms and methods are introduced for robust design of materials, rather than ad hoc heuristics--it is oriented towards a true systems approach to design of materials and products

Book Computational Homogenization of Heterogeneous Materials with Finite Elements

Download or read book Computational Homogenization of Heterogeneous Materials with Finite Elements written by Julien Yvonnet and published by Springer. This book was released on 2019-06-11 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides a concise overview of the main theoretical and numerical tools to solve homogenization problems in solids with finite elements. Starting from simple cases (linear thermal case) the problems are progressively complexified to finish with nonlinear problems. The book is not an overview of current research in that field, but a course book, and summarizes established knowledge in this area such that students or researchers who would like to start working on this subject will acquire the basics without any preliminary knowledge about homogenization. More specifically, the book is written with the objective of practical implementation of the methodologies in simple programs such as Matlab. The presentation is kept at a level where no deep mathematics are required.​

Book Materials with Internal Structure

Download or read book Materials with Internal Structure written by Patrizia Trovalusci and published by Springer. This book was released on 2015-10-17 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a series of concise papers by researchers specialized in various fields of continuum and computational mechanics and of material science. The focus is on principles and strategies for multiscale modeling and simulation of complex heterogeneous materials, with periodic or random microstructure, subjected to various types of mechanical, thermal, chemical loadings and environmental effects. A wide overview of complex behavior of materials (plasticity, damage, fracture, growth, etc.) is provided. Among various approaches, attention is given to advanced non-classical continua modeling which, provided by constitutive characterization for the internal and external actions (in particular boundary conditions), is a very powerful frame for the gross mechanical description of complex material behaviors, able to circumvent the restrictions of classical coarse–graining multiscale approaches.

Book Fundamentals of Multiscale Modeling of Structural Materials

Download or read book Fundamentals of Multiscale Modeling of Structural Materials written by Wenjie Xia and published by Elsevier. This book was released on 2022-11-26 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Multiscale Modeling of Structural Materials provides a robust introduction to the computational tools, underlying theory, practical applications, and governing physical phenomena necessary to simulate and understand a wide-range of structural materials at multiple time and length scales. The book offers practical guidelines for modeling common structural materials with well-established techniques, outlining detailed modeling approaches for calculating and analyzing mechanical, thermal and transport properties of various structural materials such as metals, cement/concrete, polymers, composites, wood, thin films, and more.Computational approaches based on artificial intelligence and machine learning methods as complementary tools to the physics-based multiscale techniques are discussed as are modeling techniques for additively manufactured structural materials. Special attention is paid to how these methods can be used to develop the next generation of sustainable, resilient and environmentally-friendly structural materials, with a specific emphasis on bridging the atomistic and continuum modeling scales for these materials. Synthesizes the latest cutting-edge computational multiscale modeling techniques for an array of structural materials Emphasizes the foundations of the field and offers practical guidelines for modeling material systems with well-established techniques Covers methods for calculating and analyzing mechanical, thermal and transport properties of various structural materials such as metals, cement/concrete, polymers, composites, wood, and more Highlights underlying theory, emerging areas, future directions and various applications of the modeling methods covered Discusses the integration of multiscale modeling and artificial intelligence

Book Heterogeneous Media

Download or read book Heterogeneous Media written by Konstantin Markov and published by Springer Science & Business Media. This book was released on 2000-02-02 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most materials used in contemporary life and industry are heterogeneous (composites) and multicomponent, possessing a rich and complex internal structure. This internal structure, or microstructure, plays a key role in understanding and controlling the continuum behavior, or macroscopic, of a wide variety of materials. The modeling process is a critical tool for scientists and engineers studying the analysis and experimentation for the micromechanics and behavior of these materials. "Heterogeneous Media" is a critical, in-depth edited survey of the major topics surrounding the modeling and analysis of problems in micromechanics of multicomponent systems, including conceptual and practical aspects. The goal of this extensive and comprehensive survey is to provide both specialists and nonspecialists with an authoritative and interdisciplinary perspective of current ideas and methods used for modeling heterogeneous materials behavior and their applications. Topics and Features: * all chapters use interdisciplinary modeling perspective for investigating heterogeneous media*Five chapters provide self-contained discussions, with background provided*Focuses only upon most important techniques and models, fully exploring micro-macro interconnections*extensive introductory survey chapter on micromechanics of heterogeneous media*microstructure characterization via statistical correlation functions*micro-scale deformation of pore space*wave fields and effective dynamical properties*modeling of the complex production technologies for composite materials The book is ideal for a general scientific and engineering audience needing an in-depth view and guide to current ideas, methods and

Book Multiscale Methods in Computational Mechanics

Download or read book Multiscale Methods in Computational Mechanics written by René de Borst and published by Springer Science & Business Media. This book was released on 2010-10-09 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work gives a modern, up-to-date account of recent developments in computational multiscale mechanics. Both upscaling and concurrent computing methodologies will be addressed for a range of application areas in computational solid and fluid mechanics: Scale transitions in materials, turbulence in fluid-structure interaction problems, multiscale/multilevel optimization, multiscale poromechanics. A Dutch-German research group that consists of qualified and well-known researchers in the field has worked for six years on the topic of computational multiscale mechanics. This text provides a unique opportunity to consolidate and disseminate the knowledge gained in this project. The addition of chapters written by experts outside this working group provides a broad and multifaceted view of this rapidly evolving field.

Book A Hierarchical Framework for the Multiscale Modeling of Microstructure Evolution in Heterogeneous Materials

Download or read book A Hierarchical Framework for the Multiscale Modeling of Microstructure Evolution in Heterogeneous Materials written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: All materials are heterogeneous at various scales of observation. The influence of material heterogeneity on nonuniform response and microstructure evolution can have profound impact on continuum thermomechanical response at macroscopic "engineering" scales. In many cases, it is necessary to treat this behavior as a multiscale process thus integrating the physical understanding of material behavior at various physical (length and time) scales in order to more accurately predict the thermomechanical response of materials as their microstructure evolves. The intent of the dissertation is to provide a formal framework for multiscale hierarchical homogenization to be used in developing constitutive models.

Book Multiscale Modelling of Advanced Materials

Download or read book Multiscale Modelling of Advanced Materials written by Runa Kumari and published by Springer Nature. This book was released on 2020-02-08 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume covers the recent advances and research on the modeling and simulation of materials. The primary aim is to take the reader through the mathematical analysis to the theories of electricity and magnetism using multiscale modelling, covering a variety of numerical methods such as finite difference time domain (FDTD), finite element method (FEM) and method of moments. The book also introduces the multiscale Green’s function (GF) method for static and dynamic modelling and simulation results of modern advanced nanomaterials, particularly the two-dimensional (2D) materials. This book will be of interest to researchers and industry professionals working on advanced materials.

Book An Introduction to Computational Micromechanics

Download or read book An Introduction to Computational Micromechanics written by Tarek I. Zohdi and published by Springer Science & Business Media. This book was released on 2008-03-15 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this, its second corrected printing, Zohdi and Wriggers’ illuminating text presents a comprehensive introduction to the subject. The authors include in their scope basic homogenization theory, microstructural optimization and multifield analysis of heterogeneous materials. This volume is ideal for researchers and engineers, and can be used in a first-year course for graduate students with an interest in the computational micromechanical analysis of new materials.

Book Multiscale Methods

    Book Details:
  • Author : Jacob Fish
  • Publisher : Oxford University Press
  • Release : 2010
  • ISBN : 0199233853
  • Pages : 631 pages

Download or read book Multiscale Methods written by Jacob Fish and published by Oxford University Press. This book was released on 2010 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: Small scale features and processes occurring at nanometer and femtosecond scales have a profound impact on what happens at a larger scale and over an extensive period of time. The primary objective of this volume is to reflect the state-of-the-art in multiscale mathematics, modeling, and simulations and to address the following barriers: What is the information that needs to be transferred from one model or scale to another and what physical principles must be satisfied during thetransfer of information? What are the optimal ways to achieve such transfer of information? How can variability of physical parameters at multiple scales be quantified and how can it be accounted for to ensure design robustness?The multiscale approaches in space and time presented in this volume are grouped into two main categories: information-passing and concurrent. In the concurrent approaches various scales are simultaneously resolved, whereas in the information-passing methods the fine scale is modeled and its gross response is infused into the continuum scale. The issue of reliability of multiscale modeling and simulation tools which focus on a hierarchy of multiscale models and an a posteriori model of errorestimation including uncertainty quantification, is discussed in several chapters. Component software that can be effectively combined to address a wide range of multiscale simulations is also described. Applications range from advanced materials to nanoelectromechanical systems (NEMS), biologicalsystems, and nanoporous catalysts where physical phenomena operates across 12 orders of magnitude in time scales and 10 orders of magnitude in spatial scales.This volume is a valuable reference book for scientists, engineers and graduate students practicing in traditional engineering and science disciplines as well as in emerging fields of nanotechnology, biotechnology, microelectronics and energy.

Book Multiscale Modeling Approaches for Composites

Download or read book Multiscale Modeling Approaches for Composites written by George Chatzigeorgiou and published by Elsevier. This book was released on 2022-01-07 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale Modeling Approaches for Composites outlines the fundamentals of common multiscale modeling techniques and provides detailed guidance for putting them into practice. Various homogenization methods are presented in a simple, didactic manner, with an array of numerical examples. The book starts by covering the theoretical underpinnings of tensors and continuum mechanics concepts, then passes to actual micromechanic techniques for composite media and laminate plates. In the last chapters the book covers advanced topics in homogenization, including Green’s tensor, Hashin-Shtrikman bounds, and special types of problems. All chapters feature comprehensive analytical and numerical examples (Python and ABAQUS scripts) to better illustrate the theory. Bridges theory and practice, providing step-by-step instructions for implementing multiscale modeling approaches for composites and the theoretical concepts behind them Covers boundary conditions, data-exchange between scales, the Hill-Mandel principle, average stress and strain theorems, and more Discusses how to obtain composite properties using different boundary conditions Includes access to a companion site, featuring the numerical examples, Python and ABACUS codes discussed in the book

Book Heterogeneous Materials

Download or read book Heterogeneous Materials written by Muhammad Sahimi and published by Springer Science & Business Media. This book was released on 2003-05-15 with total page 650 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph describes and discusses the properties of heterogeneous materials, comparing two fundamental approaches to describing and predicting materials’ properties. This multidisciplinary book will appeal to applied physicists, materials scientists, chemical and mechanical engineers, chemists, and applied mathematicians.

Book Multiscale Finite Element Methods

Download or read book Multiscale Finite Element Methods written by Yalchin Efendiev and published by Springer Science & Business Media. This book was released on 2009-01-10 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this monograph is to describe the main concepts and recent - vances in multiscale ?nite element methods. This monograph is intended for thebroaderaudienceincludingengineers,appliedscientists,andforthosewho are interested in multiscale simulations. The book is intended for graduate students in applied mathematics and those interested in multiscale compu- tions. It combines a practical introduction, numerical results, and analysis of multiscale ?nite element methods. Due to the page limitation, the material has been condensed. Each chapter of the book starts with an introduction and description of the proposed methods and motivating examples. Some new techniques are introduced using formal arguments that are justi?ed later in the last chapter. Numerical examples demonstrating the signi?cance of the proposed methods are presented in each chapter following the description of the methods. In the last chapter, we analyze a few representative cases with the objective of demonstrating the main error sources and the convergence of the proposed methods. A brief outline of the book is as follows. The ?rst chapter gives a general introductiontomultiscalemethodsandanoutlineofeachchapter.Thesecond chapter discusses the main idea of the multiscale ?nite element method and its extensions. This chapter also gives an overview of multiscale ?nite element methods and other related methods. The third chapter discusses the ext- sion of multiscale ?nite element methods to nonlinear problems. The fourth chapter focuses on multiscale methods that use limited global information.