EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems

Download or read book Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems written by Clemens Pechstein and published by Springer Science & Business Media. This book was released on 2012-12-14 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tearing and interconnecting methods, such as FETI, FETI-DP, BETI, etc., are among the most successful domain decomposition solvers for partial differential equations. The purpose of this book is to give a detailed and self-contained presentation of these methods, including the corresponding algorithms as well as a rigorous convergence theory. In particular, two issues are addressed that have not been covered in any monograph yet: the coupling of finite and boundary elements within the tearing and interconnecting framework including exterior problems, and the case of highly varying (multiscale) coefficients not resolved by the subdomain partitioning. In this context, the book offers a detailed view to an active and up-to-date area of research.

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2004 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Parallel Processing and Applied Mathematics

Download or read book Parallel Processing and Applied Mathematics written by Roman Wyrzykowski and published by Springer. This book was released on 2014-05-07 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume-set (LNCS 8384 and 8385) constitutes the refereed proceedings of the 10th International Conference of Parallel Processing and Applied Mathematics, PPAM 2013, held in Warsaw, Poland, in September 2013. The 143 revised full papers presented in both volumes were carefully reviewed and selected from numerous submissions. The papers cover important fields of parallel/distributed/cloud computing and applied mathematics, such as numerical algorithms and parallel scientific computing; parallel non-numerical algorithms; tools and environments for parallel/distributed/cloud computing; applications of parallel computing; applied mathematics, evolutionary computing and metaheuristics.

Book An Introduction to Reservoir Simulation Using MATLAB GNU Octave

Download or read book An Introduction to Reservoir Simulation Using MATLAB GNU Octave written by Knut-Andreas Lie and published by Cambridge University Press. This book was released on 2019-08-08 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents numerical methods for reservoir simulation, with efficient implementation and examples using widely-used online open-source code, for researchers, professionals and advanced students. This title is also available as Open Access on Cambridge Core.

Book Multiple Time Scale Dynamics

Download or read book Multiple Time Scale Dynamics written by Christian Kuehn and published by Springer. This book was released on 2015-02-25 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to dynamical systems with multiple time scales. The approach it takes is to provide an overview of key areas, particularly topics that are less available in the introductory form. The broad range of topics included makes it accessible for students and researchers new to the field to gain a quick and thorough overview. The first of its kind, this book merges a wide variety of different mathematical techniques into a more unified framework. The book is highly illustrated with many examples and exercises and an extensive bibliography. The target audience of this book are senior undergraduates, graduate students as well as researchers interested in using the multiple time scale dynamics theory in nonlinear science, either from a theoretical or a mathematical modeling perspective.

Book The Scaled Boundary Finite Element Method

Download or read book The Scaled Boundary Finite Element Method written by Chongmin Song and published by John Wiley & Sons. This book was released on 2018-06-19 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.

Book Applied Functional Analysis

Download or read book Applied Functional Analysis written by J. Tinsley Oden and published by CRC Press. This book was released on 2017-12-01 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Functional Analysis, Third Edition provides a solid mathematical foundation for the subject. It motivates students to study functional analysis by providing many contemporary applications and examples drawn from mechanics and science. This well-received textbook starts with a thorough introduction to modern mathematics before continuing with detailed coverage of linear algebra, Lebesque measure and integration theory, plus topology with metric spaces. The final two chapters provides readers with an in-depth look at the theory of Banach and Hilbert spaces before concluding with a brief introduction to Spectral Theory. The Third Edition is more accessible and promotes interest and motivation among students to prepare them for studying the mathematical aspects of numerical analysis and the mathematical theory of finite elements.

Book Numerical Solution of Ordinary Differential Equations

Download or read book Numerical Solution of Ordinary Differential Equations written by Kendall Atkinson and published by John Wiley & Sons. This book was released on 2011-10-24 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.

Book The Finite Element Method  Solid mechanics

Download or read book The Finite Element Method Solid mechanics written by O. C. Zienkiewicz and published by Butterworth-Heinemann. This book was released on 2000 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Extended Finite Element Method

Download or read book Extended Finite Element Method written by Amir R. Khoei and published by John Wiley & Sons. This book was released on 2015-02-23 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Explores the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. Covers numerous applications of XFEM including fracture mechanics, large deformation, plasticity, multiphase flow, hydraulic fracturing and contact problems Accompanied by a website hosting source code and examples

Book An Introduction to Computational Stochastic PDEs

Download or read book An Introduction to Computational Stochastic PDEs written by Gabriel J. Lord and published by Cambridge University Press. This book was released on 2014-08-11 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a practical presentation of stochastic partial differential equations arising in physical applications and their numerical approximation.

Book Scientific Computing with Case Studies

Download or read book Scientific Computing with Case Studies written by Dianne P. O'Leary and published by SIAM. This book was released on 2009-03-19 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a practical guide to the numerical solution of linear and nonlinear equations, differential equations, optimization problems, and eigenvalue problems. It treats standard problems and introduces important variants such as sparse systems, differential-algebraic equations, constrained optimization, Monte Carlo simulations, and parametric studies. Stability and error analysis are emphasized, and the Matlab algorithms are grounded in sound principles of software design and understanding of machine arithmetic and memory management. Nineteen case studies provide experience in mathematical modeling and algorithm design, motivated by problems in physics, engineering, epidemiology, chemistry, and biology. The topics included go well beyond the standard first-course syllabus, introducing important problems such as differential-algebraic equations and conic optimization problems, and important solution techniques such as continuation methods. The case studies cover a wide variety of fascinating applications, from modeling the spread of an epidemic to determining truss configurations.

Book Multiscale Potential Theory

Download or read book Multiscale Potential Theory written by Willi Freeden and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained text/reference provides a basic foundation for practitioners, researchers, and students interested in any of the diverse areas of multiscale (geo)potential theory. New mathematical methods are developed enabling the gravitational potential of a planetary body to be modeled using a continuous flow of observations from land or satellite devices. Harmonic wavelets methods are introduced, as well as fast computational schemes and various numerical test examples. Presented are multiscale approaches for numerous geoscientific problems, including geoidal determination, magnetic field reconstruction, deformation analysis, and density variation modelling With exercises at the end of each chapter, the book may be used as a textbook for graduate-level courses in geomathematics, applied mathematics, and geophysics. The work is also an up-to-date reference text for geoscientists, applied mathematicians, and engineers.

Book IV Hotine Marussi Symposium on Mathematical Geodesy

Download or read book IV Hotine Marussi Symposium on Mathematical Geodesy written by Battista Benciolini and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the IV Hotine-Marussi Symposium held in Trento, the volume covers three important topics: boundary value problems, satellite geodesy and stochastic methods in geodesy. The first part deals with boundary value problems which are tackled from both the theoretical and the numerical point of view. The part on satellite geodesy deals with the simulation of the GOCE mission, the integration of satellite gradiometry and airborne gravity for gravity-filed recovery, satellite-to-satellite tracking and orbit sensitivity analysis. Various applied and theoretical contributions are devoted to the stochastic methods applied to geodesy. The book presents the state-of-the-art of the main topics in the theoretical and methodological aspects of geodesy.

Book Finite Element Applications

Download or read book Finite Element Applications written by Michael Okereke and published by Springer. This book was released on 2018-01-23 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook demonstrates the application of the finite element philosophy to the solution of real-world problems and is aimed at graduate level students, but is also suitable for advanced undergraduate students. An essential part of an engineer’s training is the development of the skills necessary to analyse and predict the behaviour of engineering systems under a wide range of potentially complex loading conditions. Only a small proportion of real-life problems can be solved analytically, and consequently, there arises the need to be able to use numerical methods capable of simulating real phenomena accurately. The finite element (FE) method is one such widely used numerical method. Finite Element Applications begins with demystifying the ‘black box’ of finite element solvers and progresses to addressing the different pillars that make up a robust finite element solution framework. These pillars include: domain creation, mesh generation and element formulations, boundary conditions, and material response considerations. Readers of this book will be equipped with the ability to develop models of real-world problems using industry-standard finite element packages.

Book The Finite Element Method and Its Reliability

Download or read book The Finite Element Method and Its Reliability written by Ivo Babuška and published by Oxford University Press. This book was released on 2001 with total page 820 pages. Available in PDF, EPUB and Kindle. Book excerpt: The finite element method is a numerical method widely used in engineering. Experience shows that unreliable computation can lead to very serious consequences. Hence reliability questions stand are at the forefront of engineering and theoretical interests. This book presents the mathematical theory of the finite element method and is the first to focus on the questions of how reliable computed results really are. It addresses among other topics the local behaviour, errors caused by pollution, superconvergence, and optimal meshes. Many computational examples illustrate the importance of the theoretical conclusions for practical computations. Graduate students, lecturers, and researchers in mathematics, engineering, and scientific computation will benefit from the clear structure of the book, and will find this a very useful reference.

Book Microstructural Modeling and Computational Homogenization of the Physically Linear and Nonlinear Constitutive Behavior of Micro heterogeneous Materials

Download or read book Microstructural Modeling and Computational Homogenization of the Physically Linear and Nonlinear Constitutive Behavior of Micro heterogeneous Materials written by Felix Fritzen and published by KIT Scientific Publishing. This book was released on 2014-08-22 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineering materials show a pronounced heterogeneity on a smaller scale that influences the macroscopic constitutive behavior. Algorithms for the periodic discretization of microstructures are presented. These are used within the Nonuniform Transformation Field Analysis (NTFA) which is an order reduction based nonlinear homogenization method with micro-mechanical background. Theoretical and numerical aspects of the method are discussed and its computational efficiency is validated.