EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Multiple Fuzzy Classification Systems

Download or read book Multiple Fuzzy Classification Systems written by Rafał Scherer and published by Springer. This book was released on 2012-06-26 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuzzy classifiers are important tools in exploratory data analysis, which is a vital set of methods used in various engineering, scientific and business applications. Fuzzy classifiers use fuzzy rules and do not require assumptions common to statistical classification. Rough set theory is useful when data sets are incomplete. It defines a formal approximation of crisp sets by providing the lower and the upper approximation of the original set. Systems based on rough sets have natural ability to work on such data and incomplete vectors do not have to be preprocessed before classification. To achieve better performance than existing machine learning systems, fuzzy classifiers and rough sets can be combined in ensembles. Such ensembles consist of a finite set of learning models, usually weak learners. The present book discusses the three aforementioned fields – fuzzy systems, rough sets and ensemble techniques. As the trained ensemble should represent a single hypothesis, a lot of attention is placed on the possibility to combine fuzzy rules from fuzzy systems being members of classification ensemble. Furthermore, an emphasis is placed on ensembles that can work on incomplete data, thanks to rough set theory. .

Book Multiple Classifier Systems

Download or read book Multiple Classifier Systems written by Josef Kittler and published by Springer Science & Business Media. This book was released on 2000-06-14 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the First International Workshop on Multiple Classifier Systems, MCS 2000, held in Cagliari, Italy in June 2000. The 33 revised full papers presented together with five invited papers were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections on theoretical issues, multiple classifier fusion, bagging and boosting, design of multiple classifier systems, applications of multiple classifier systems, document analysis, and miscellaneous applications.

Book Multiple Classifier Systems

Download or read book Multiple Classifier Systems written by Jón Atli Benediktsson and published by Springer. This book was released on 2009-06-10 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings are a record of the Multiple Classi?er Systems Workshop, MCS 2009, held at the University of Iceland, Reykjavik, Iceland in June 2009. Being the eighth in a well-established series of meetings providing an inter- tional forum for the discussion of issues in multiple classi?er system design, the workshop achieved its objective of bringing together researchers from diverse communities (neural networks,pattern recognition,machine learning and stat- tics) concerned with this research topic. From more than 70 submissions, the Program Committee selected 54 papers to create an interesting scienti?c program. The special focus of MCS 2009 was on the application of multiple classi?er systems in remote sensing. This part- ular application uses multiple classi?ers for raw data fusion, feature level fusion and decision level fusion. In addition to the excellent regular submission in the technical program, outstanding contributions were made by invited speakers Melba Crawford from Purdue University and Zhi-Hua Zhou of Nanjing Univ- sity. Papers of these talks are included in these workshop proceedings. With the workshop’sapplicationfocusbeingonremotesensing,Prof.Crawford’sexpertise in the use of multiple classi?cation systems in this context made the discussions on this topic at MCS 2009 particularly fruitful.

Book Multiple Fuzzy Classification Systems

Download or read book Multiple Fuzzy Classification Systems written by Rafał Scherer and published by Springer. This book was released on 2012-06-27 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuzzy classifiers are important tools in exploratory data analysis, which is a vital set of methods used in various engineering, scientific and business applications. Fuzzy classifiers use fuzzy rules and do not require assumptions common to statistical classification. Rough set theory is useful when data sets are incomplete. It defines a formal approximation of crisp sets by providing the lower and the upper approximation of the original set. Systems based on rough sets have natural ability to work on such data and incomplete vectors do not have to be preprocessed before classification. To achieve better performance than existing machine learning systems, fuzzy classifiers and rough sets can be combined in ensembles. Such ensembles consist of a finite set of learning models, usually weak learners. The present book discusses the three aforementioned fields – fuzzy systems, rough sets and ensemble techniques. As the trained ensemble should represent a single hypothesis, a lot of attention is placed on the possibility to combine fuzzy rules from fuzzy systems being members of classification ensemble. Furthermore, an emphasis is placed on ensembles that can work on incomplete data, thanks to rough set theory. .

Book Multiple Classifier Systems

Download or read book Multiple Classifier Systems written by Fabio Roli and published by Springer. This book was released on 2003-08-02 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third International Workshop on Multiple Classifier Systems, MCS 2002, held in Cagliari, Italy, in June 2002.The 29 revised full papers presented together with three invited papers were carefully reviewed and selected for inclusion in the volume. The papers are organized in topical sections on bagging and boosting, ensemble learning and neural networks, design methodologies, combination strategies, analysis and performance evaluation, and applications.

Book Fuzzy Classifier Design

Download or read book Fuzzy Classifier Design written by Ludmila I. Kuncheva and published by Physica. This book was released on 2012-11-08 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuzzy sets were first proposed by Lotfi Zadeh in his seminal paper [366] in 1965, and ever since have been a center of many discussions, fervently admired and condemned. Both proponents and opponents consider the argu ments pointless because none of them would step back from their territory. And stiH, discussions burst out from a single sparkle like a conference pa per or a message on some fuzzy-mail newsgroup. Here is an excerpt from an e-mail messagepostedin1993tofuzzy-mail@vexpert. dbai. twvien. ac. at. by somebody who signed "Dave". , . . . Why then the "logic" in "fuzzy logic"? I don't think anyone has successfully used fuzzy sets for logical inference, nor do I think anyone wiH. In my admittedly neophyte opinion, "fuzzy logic" is a misnomer, an oxymoron. (1 would be delighted to be proven wrong on that. ) . . . I carne to the fuzzy literature with an open mind (and open wal let), high hopes and keen interest. I am very much disiHusioned with "fuzzy" per se, but I did happen across some extremely interesting things along the way. " Dave, thanks for the nice quote! Enthusiastic on the surface, are not many of us suspicious deep down? In some books and journals the word fuzzy is religiously avoided: fuzzy set theory is viewed as a second-hand cheap trick whose aim is nothing else but to devalue good classical theories and open up the way to lazy ignorants and newcomers.

Book Multiple Classifier Systems

Download or read book Multiple Classifier Systems written by Terry Windeatt and published by Springer. This book was released on 2003-08-03 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: The refereed proceedings of the 4th International Workshop on Multiple Classifier Systems, MCS 2003, held in Guildford, UK in June 2003. The 40 revised full papers presented with one invited paper were carefully reviewed and selected for presentation. The papers are organized in topical sections on boosting, combination rules, multi-class methods, fusion schemes and architectures, neural network ensembles, ensemble strategies, and applications

Book Evolving Intelligent Systems

Download or read book Evolving Intelligent Systems written by Plamen Angelov and published by John Wiley & Sons. This book was released on 2010-03-25 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: From theory to techniques, the first all-in-one resource for EIS There is a clear demand in advanced process industries, defense, and Internet and communication (VoIP) applications for intelligent yet adaptive/evolving systems. Evolving Intelligent Systems is the first self- contained volume that covers this newly established concept in its entirety, from a systematic methodology to case studies to industrial applications. Featuring chapters written by leading world experts, it addresses the progress, trends, and major achievements in this emerging research field, with a strong emphasis on the balance between novel theoretical results and solutions and practical real-life applications. Explains the following fundamental approaches for developing evolving intelligent systems (EIS): the Hierarchical Prioritized Structure the Participatory Learning Paradigm the Evolving Takagi-Sugeno fuzzy systems (eTS+) the evolving clustering algorithm that stems from the well-known Gustafson-Kessel offline clustering algorithm Emphasizes the importance and increased interest in online processing of data streams Outlines the general strategy of using the fuzzy dynamic clustering as a foundation for evolvable information granulation Presents a methodology for developing robust and interpretable evolving fuzzy rule-based systems Introduces an integrated approach to incremental (real-time) feature extraction and classification Proposes a study on the stability of evolving neuro-fuzzy recurrent networks Details methodologies for evolving clustering and classification Reveals different applications of EIS to address real problems in areas of: evolving inferential sensors in chemical and petrochemical industry learning and recognition in robotics Features downloadable software resources Evolving Intelligent Systems is the one-stop reference guide for both theoretical and practical issues for computer scientists, engineers, researchers, applied mathematicians, machine learning and data mining experts, graduate students, and professionals.

Book Adaptive and Natural Computing Algorithms

Download or read book Adaptive and Natural Computing Algorithms written by Mikko Kolehmainen and published by Springer Science & Business Media. This book was released on 2009-10-15 with total page 645 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-proceedings of the 9th International Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2009, held in Kuopio, Finland, in April 2009. The 63 revised full papers presented were carefully reviewed and selected from a total of 112 submissions. The papers are organized in topical sections on neutral networks, evolutionary computation, learning, soft computing, bioinformatics as well as applications.

Book Computer Vision Methods for Fast Image Classification and Retrieval

Download or read book Computer Vision Methods for Fast Image Classification and Retrieval written by Rafał Scherer and published by Springer. This book was released on 2019-01-29 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents selected methods for accelerating image retrieval and classification in large collections of images using what are referred to as ‘hand-crafted features.’ It introduces readers to novel rapid image description methods based on local and global features, as well as several techniques for comparing images. Developing content-based image comparison, retrieval and classification methods that simulate human visual perception is an arduous and complex process. The book’s main focus is on the application of these methods in a relational database context. The methods presented are suitable for both general-type and medical images. Offering a valuable textbook for upper-level undergraduate or graduate-level courses on computer science or engineering, as well as a guide for computer vision researchers, the book focuses on techniques that work under real-world large-dataset conditions.

Book Interpretability Issues in Fuzzy Modeling

Download or read book Interpretability Issues in Fuzzy Modeling written by Jorge Casillas and published by Springer. This book was released on 2013-06-05 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuzzy modeling has become one of the most productive and successful results of fuzzy logic. Among others, it has been applied to knowledge discovery, automatic classification, long-term prediction, or medical and engineering analysis. The research developed in the topic during the last two decades has been mainly focused on exploiting the fuzzy model flexibility to obtain the highest accuracy. This approach usually sets aside the interpretability of the obtained models. However, we should remember the initial philosophy of fuzzy sets theory directed to serve the bridge between the human understanding and the machine processing. In this challenge, the ability of fuzzy models to express the behavior of the real system in a comprehensible manner acquires a great importance. This book collects the works of a group of experts in the field that advocate the interpretability improvements as a mechanism to obtain well balanced fuzzy models.

Book Knowledge Based Intelligent Information and Engineering Systems

Download or read book Knowledge Based Intelligent Information and Engineering Systems written by Bogdan Gabrys and published by Springer. This book was released on 2006-10-11 with total page 1368 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three volume set LNAI 4251, LNAI 4252, and LNAI 4253 constitutes the refereed proceedings of the 10th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2006, held in Bournemouth, UK, in October 2006. The 480 revised papers presented were carefully reviewed and selected from about 1400 submissions. The papers present a wealth of original research results from the field of intelligent information processing.

Book A New Paradigm Of Knowledge Engineering By Soft Computing

Download or read book A New Paradigm Of Knowledge Engineering By Soft Computing written by Liya Ding and published by World Scientific. This book was released on 2001-03-09 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soft computing (SC) consists of several computing paradigms, including neural networks, fuzzy set theory, approximate reasoning, and derivative-free optimization methods such as genetic algorithms. The integration of those constituent methodologies forms the core of SC. In addition, the synergy allows SC to incorporate human knowledge effectively, deal with imprecision and uncertainty, and learn to adapt to unknown or changing environments for better performance. Together with other modern technologies, SC and its applications exert unprecedented influence on intelligent systems that mimic human intelligence in thinking, learning, reasoning, and many other aspects.Knowledge engineering (KE), which deals with knowledge acquisition, representation, validation, inferencing, explanation, and maintenance, has made significant progress recently, owing to the indefatigable efforts of researchers. Undoubtedly, the hot topics of data mining and knowledge/data discovery have injected new life into the classical AI world.This book tells readers how KE has been influenced and extended by SC and how SC will be helpful in pushing the frontier of KE further. It is intended for researchers and graduate students to use as a reference in the study of knowledge engineering and intelligent systems. The reader is expected to have a basic knowledge of fuzzy logic, neural networks, genetic algorithms, and knowledge-based systems.

Book Genetic Fuzzy Systems  Evolutionary Tuning And Learning Of Fuzzy Knowledge Bases

Download or read book Genetic Fuzzy Systems Evolutionary Tuning And Learning Of Fuzzy Knowledge Bases written by Oscar Cordon and published by World Scientific. This book was released on 2001-07-13 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, a great number of publications have explored the use of genetic algorithms as a tool for designing fuzzy systems. Genetic Fuzzy Systems explores and discusses this symbiosis of evolutionary computation and fuzzy logic. The book summarizes and analyzes the novel field of genetic fuzzy systems, paying special attention to genetic algorithms that adapt and learn the knowledge base of a fuzzy-rule-based system. It introduces the general concepts, foundations and design principles of genetic fuzzy systems and covers the topic of genetic tuning of fuzzy systems. It also introduces the three fundamental approaches to genetic learning processes in fuzzy systems: the Michigan, Pittsburgh and Iterative-learning methods. Finally, it explores hybrid genetic fuzzy systems such as genetic fuzzy clustering or genetic neuro-fuzzy systems and describes a number of applications from different areas.Genetic Fuzzy System represents a comprehensive treatise on the design of the fuzzy-rule-based systems using genetic algorithms, both from a theoretical and a practical perspective. It is a valuable compendium for scientists and engineers concerned with research and applications in the domain of fuzzy systems and genetic algorithms.

Book Rough Fuzzy Image Analysis

Download or read book Rough Fuzzy Image Analysis written by Sankar K. Pal and published by CRC Press. This book was released on 2010-05-04 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuzzy sets, near sets, and rough sets are useful and important stepping stones in a variety of approaches to image analysis. These three types of sets and their various hybridizations provide powerful frameworks for image analysis. Emphasizing the utility of fuzzy, near, and rough sets in image analysis, Rough Fuzzy Image Analysis: Foundations and

Book Fuzzy Systems and Knowledge Discovery

Download or read book Fuzzy Systems and Knowledge Discovery written by Lipo Wang and published by Springer Science & Business Media. This book was released on 2006-09-19 with total page 1362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2006, held in federation with the Second International Conference on Natural Computation ICNC 2006. The book presents 115 revised full papers and 50 revised short papers. Coverage includes neural computation, quantum computation, evolutionary computation, DNA computation, fuzzy computation, granular computation, artificial life, innovative applications to knowledge discovery, finance, operations research, and more.

Book Artificial Intelligence and Soft Computing

Download or read book Artificial Intelligence and Soft Computing written by Leszek Rutkowski and published by Springer. This book was released on 2019-05-27 with total page 703 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume set LNCS 11508 and 11509 constitutes the refereed proceedings of of the 18th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2019, held in Zakopane, Poland, in June 2019. The 122 revised full papers presented were carefully reviewed and selected from 333 submissions. The papers included in the first volume are organized in the following five parts: neural networks and their applications; fuzzy systems and their applications; evolutionary algorithms and their applications; pattern classification; artificial intelligence in modeling and simulation. The papers included in the second volume are organized in the following five parts: computer vision, image and speech analysis; bioinformatics, biometrics, and medical applications; data mining; various problems of artificial intelligence; agent systems, robotics and control.