EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Multiobjective Optimization

Download or read book Multiobjective Optimization written by Jürgen Branke and published by Springer. This book was released on 2008-10-18 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiobjective optimization deals with solving problems having not only one, but multiple, often conflicting, criteria. Such problems can arise in practically every field of science, engineering and business, and the need for efficient and reliable solution methods is increasing. The task is challenging due to the fact that, instead of a single optimal solution, multiobjective optimization results in a number of solutions with different trade-offs among criteria, also known as Pareto optimal or efficient solutions. Hence, a decision maker is needed to provide additional preference information and to identify the most satisfactory solution. Depending on the paradigm used, such information may be introduced before, during, or after the optimization process. Clearly, research and application in multiobjective optimization involve expertise in optimization as well as in decision support. This state-of-the-art survey originates from the International Seminar on Practical Approaches to Multiobjective Optimization, held in Dagstuhl Castle, Germany, in December 2006, which brought together leading experts from various contemporary multiobjective optimization fields, including evolutionary multiobjective optimization (EMO), multiple criteria decision making (MCDM) and multiple criteria decision aiding (MCDA). This book gives a unique and detailed account of the current status of research and applications in the field of multiobjective optimization. It contains 16 chapters grouped in the following 5 thematic sections: Basics on Multiobjective Optimization; Recent Interactive and Preference-Based Approaches; Visualization of Solutions; Modelling, Implementation and Applications; and Quality Assessment, Learning, and Future Challenges.

Book Multiobjective Optimization

Download or read book Multiobjective Optimization written by Yann Collette and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text offers many multiobjective optimization methods accompanied by analytical examples, and it treats problems not only in engineering but also operations research and management. It explains how to choose the best method to solve a problem and uses three primary application examples: optimization of the numerical simulation of an industrial process; sizing of a telecommunication network; and decision-aid tools for the sorting of bids.

Book Multi Objective Combinatorial Optimization Problems and Solution Methods

Download or read book Multi Objective Combinatorial Optimization Problems and Solution Methods written by Mehdi Toloo and published by Academic Press. This book was released on 2022-02-09 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-Objective Combinatorial Optimization Problems and Solution Methods discusses the results of a recent multi-objective combinatorial optimization achievement that considered metaheuristic, mathematical programming, heuristic, hyper heuristic and hybrid approaches. In other words, the book presents various multi-objective combinatorial optimization issues that may benefit from different methods in theory and practice. Combinatorial optimization problems appear in a wide range of applications in operations research, engineering, biological sciences and computer science, hence many optimization approaches have been developed that link the discrete universe to the continuous universe through geometric, analytic and algebraic techniques. This book covers this important topic as computational optimization has become increasingly popular as design optimization and its applications in engineering and industry have become ever more important due to more stringent design requirements in modern engineering practice. - Presents a collection of the most up-to-date research, providing a complete overview of multi-objective combinatorial optimization problems and applications - Introduces new approaches to handle different engineering and science problems, providing the field with a collection of related research not already covered in the primary literature - Demonstrates the efficiency and power of the various algorithms, problems and solutions, including numerous examples that illustrate concepts and algorithms

Book Evolutionary Multiobjective Optimization

Download or read book Evolutionary Multiobjective Optimization written by Ajith Abraham and published by Springer Science & Business Media. This book was released on 2005-09-05 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary Multi-Objective Optimization is an expanding field of research. This book brings a collection of papers with some of the most recent advances in this field. The topic and content is currently very fashionable and has immense potential for practical applications and includes contributions from leading researchers in the field. Assembled in a compelling and well-organised fashion, Evolutionary Computation Based Multi-Criteria Optimization will prove beneficial for both academic and industrial scientists and engineers engaged in research and development and application of evolutionary algorithm based MCO. Packed with must-find information, this book is the first to comprehensively and clearly address the issue of evolutionary computation based MCO, and is an essential read for any researcher or practitioner of the technique.

Book Nonlinear Multiobjective Optimization

Download or read book Nonlinear Multiobjective Optimization written by Kaisa Miettinen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Problems with multiple objectives and criteria are generally known as multiple criteria optimization or multiple criteria decision-making (MCDM) problems. So far, these types of problems have typically been modelled and solved by means of linear programming. However, many real-life phenomena are of a nonlinear nature, which is why we need tools for nonlinear programming capable of handling several conflicting or incommensurable objectives. In this case, methods of traditional single objective optimization and linear programming are not enough; we need new ways of thinking, new concepts, and new methods - nonlinear multiobjective optimization. Nonlinear Multiobjective Optimization provides an extensive, up-to-date, self-contained and consistent survey, review of the literature and of the state of the art on nonlinear (deterministic) multiobjective optimization, its methods, its theory and its background. The amount of literature on multiobjective optimization is immense. The treatment in this book is based on approximately 1500 publications in English printed mainly after the year 1980. Problems related to real-life applications often contain irregularities and nonsmoothnesses. The treatment of nondifferentiable multiobjective optimization in the literature is rather rare. For this reason, this book contains material about the possibilities, background, theory and methods of nondifferentiable multiobjective optimization as well. This book is intended for both researchers and students in the areas of (applied) mathematics, engineering, economics, operations research and management science; it is meant for both professionals and practitioners in many different fields of application. The intention has been to provide a consistent summary that may help in selecting an appropriate method for the problem to be solved. It is hoped the extensive bibliography will be of value to researchers.

Book Multi Objective Optimization using Artificial Intelligence Techniques

Download or read book Multi Objective Optimization using Artificial Intelligence Techniques written by Seyedali Mirjalili and published by Springer. This book was released on 2019-07-24 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the most well-regarded and recent nature-inspired algorithms capable of solving optimization problems with multiple objectives. Firstly, it provides preliminaries and essential definitions in multi-objective problems and different paradigms to solve them. It then presents an in-depth explanations of the theory, literature review, and applications of several widely-used algorithms, such as Multi-objective Particle Swarm Optimizer, Multi-Objective Genetic Algorithm and Multi-objective GreyWolf Optimizer Due to the simplicity of the techniques and flexibility, readers from any field of study can employ them for solving multi-objective optimization problem. The book provides the source codes for all the proposed algorithms on a dedicated webpage.

Book Multi Objective Optimization

Download or read book Multi Objective Optimization written by Gade Pandu Rangaiah and published by World Scientific. This book was released on 2009 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization has been playing a key role in the design, planning and operation of chemical and related processes for nearly half a century. Although process optimization for multiple objectives was studied by several researchers back in the 1970s and 1980s, it has attracted active research in the last 10 years, spurred by the new and effective techniques for multi-objective optimization. In order to capture this renewed interest, this monograph presents the recent and ongoing research in multi-optimization techniques and their applications in chemical engineering. Following a brief introduction and general review on the development of multi-objective optimization applications in chemical engineering since 2000, the book gives a description of selected multi-objective techniques and then goes on to discuss chemical engineering applications. These applications are from diverse areas within chemical engineering, and are presented in detail. All chapters will be of interest to researchers in multi-objective optimization and/or chemical engineering; they can be read individually and used in one''s learning and research. Several exercises are included at the end of many chapters, for use by both practicing engineers and students.

Book Multicriteria Optimization

Download or read book Multicriteria Optimization written by Matthias Ehrgott and published by Springer Science & Business Media. This book was released on 2006-01-16 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: - Collection of results of multicriteria optimization, including nonlinear, linear and combinatorial optimization problems - Includes numerous illustrations, examples and problems

Book Multi Objective Optimization in Computational Intelligence  Theory and Practice

Download or read book Multi Objective Optimization in Computational Intelligence Theory and Practice written by Thu Bui, Lam and published by IGI Global. This book was released on 2008-05-31 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-objective optimization (MO) is a fast-developing field in computational intelligence research. Giving decision makers more options to choose from using some post-analysis preference information, there are a number of competitive MO techniques with an increasingly large number of MO real-world applications. Multi-Objective Optimization in Computational Intelligence: Theory and Practice explores the theoretical, as well as empirical, performance of MOs on a wide range of optimization issues including combinatorial, real-valued, dynamic, and noisy problems. This book provides scholars, academics, and practitioners with a fundamental, comprehensive collection of research on multi-objective optimization techniques, applications, and practices.

Book Multiobjective Optimization Methodology

Download or read book Multiobjective Optimization Methodology written by K.S. Tang and published by CRC Press. This book was released on 2018-09-03 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book to focus on jumping genes outside bioscience and medicine, Multiobjective Optimization Methodology: A Jumping Gene Approach introduces jumping gene algorithms designed to supply adequate, viable solutions to multiobjective problems quickly and with low computational cost. Better Convergence and a Wider Spread of Nondominated Solutions The book begins with a thorough review of state-of-the-art multiobjective optimization techniques. For readers who may not be familiar with the bioscience behind the jumping gene, it then outlines the basic biological gene transposition process and explains the translation of the copy-and-paste and cut-and-paste operations into a computable language. To justify the scientific standing of the jumping genes algorithms, the book provides rigorous mathematical derivations of the jumping genes operations based on schema theory. It also discusses a number of convergence and diversity performance metrics for measuring the usefulness of the algorithms. Practical Applications of Jumping Gene Algorithms Three practical engineering applications showcase the effectiveness of the jumping gene algorithms in terms of the crucial trade-off between convergence and diversity. The examples deal with the placement of radio-to-fiber repeaters in wireless local-loop systems, the management of resources in WCDMA systems, and the placement of base stations in wireless local-area networks. Offering insight into multiobjective optimization, the authors show how jumping gene algorithms are a useful addition to existing evolutionary algorithms, particularly to obtain quick convergence solutions and solutions to outliers.

Book Efficient Learning Machines

Download or read book Efficient Learning Machines written by Mariette Awad and published by Apress. This book was released on 2015-04-27 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning.

Book Multi Objective Optimization

Download or read book Multi Objective Optimization written by Jyotsna K. Mandal and published by Springer. This book was released on 2018-08-18 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together the latest findings on efficient solutions of multi/many-objective optimization problems from the leading researchers in the field. The focus is on solving real-world optimization problems using strategies ranging from evolutionary to hybrid frameworks, and involving various computation platforms. The topics covered include solution frameworks using evolutionary to hybrid models in application areas like Analytics, Cancer Research, Traffic Management, Networks and Communications, E-Governance, Quantum Technology, Image Processing, etc. As such, the book offers a valuable resource for all postgraduate students and researchers interested in exploring solution frameworks for multi/many-objective optimization problems.

Book Multi Objective Optimization Problems

Download or read book Multi Objective Optimization Problems written by Fran Sérgio Lobato and published by Springer. This book was released on 2017-07-03 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is aimed at undergraduate and graduate students in applied mathematics or computer science, as a tool for solving real-world design problems. The present work covers fundamentals in multi-objective optimization and applications in mathematical and engineering system design using a new optimization strategy, namely the Self-Adaptive Multi-objective Optimization Differential Evolution (SA-MODE) algorithm. This strategy is proposed in order to reduce the number of evaluations of the objective function through dynamic update of canonical Differential Evolution parameters (population size, crossover probability and perturbation rate). The methodology is applied to solve mathematical functions considering test cases from the literature and various engineering systems design, such as cantilevered beam design, biochemical reactor, crystallization process, machine tool spindle design, rotary dryer design, among others.

Book Multi Objective Optimization using Evolutionary Algorithms

Download or read book Multi Objective Optimization using Evolutionary Algorithms written by Kalyanmoy Deb and published by John Wiley & Sons. This book was released on 2001-07-05 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimierung mit mehreren Zielen, evolutionäre Algorithmen: Dieses Buch wendet sich vorrangig an Einsteiger, denn es werden kaum Vorkenntnisse vorausgesetzt. Geboten werden alle notwendigen Grundlagen, um die Theorie auf Probleme der Ingenieurtechnik, der Vorhersage und der Planung anzuwenden. Der Autor gibt auch einen Ausblick auf Forschungsaufgaben der Zukunft.

Book Network Models and Optimization

Download or read book Network Models and Optimization written by Mitsuo Gen and published by Springer Science & Business Media. This book was released on 2008-07-10 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: Network models are critical tools in business, management, science and industry. “Network Models and Optimization” presents an insightful, comprehensive, and up-to-date treatment of multiple objective genetic algorithms to network optimization problems in many disciplines, such as engineering, computer science, operations research, transportation, telecommunication, and manufacturing. The book extensively covers algorithms and applications, including shortest path problems, minimum cost flow problems, maximum flow problems, minimum spanning tree problems, traveling salesman and postman problems, location-allocation problems, project scheduling problems, multistage-based scheduling problems, logistics network problems, communication network problem, and network models in assembly line balancing problems, and airline fleet assignment problems. The book can be used both as a student textbook and as a professional reference for practitioners who use network optimization methods to model and solve problems.

Book Unsupervised Classification

    Book Details:
  • Author : Sanghamitra Bandyopadhyay
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-13
  • ISBN : 3642324517
  • Pages : 271 pages

Download or read book Unsupervised Classification written by Sanghamitra Bandyopadhyay and published by Springer Science & Business Media. This book was released on 2012-12-13 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clustering is an important unsupervised classification technique where data points are grouped such that points that are similar in some sense belong to the same cluster. Cluster analysis is a complex problem as a variety of similarity and dissimilarity measures exist in the literature. This is the first book focused on clustering with a particular emphasis on symmetry-based measures of similarity and metaheuristic approaches. The aim is to find a suitable grouping of the input data set so that some criteria are optimized, and using this the authors frame the clustering problem as an optimization one where the objectives to be optimized may represent different characteristics such as compactness, symmetrical compactness, separation between clusters, or connectivity within a cluster. They explain the techniques in detail and outline many detailed applications in data mining, remote sensing and brain imaging, gene expression data analysis, and face detection. The book will be useful to graduate students and researchers in computer science, electrical engineering, system science, and information technology, both as a text and as a reference book. It will also be useful to researchers and practitioners in industry working on pattern recognition, data mining, soft computing, metaheuristics, bioinformatics, remote sensing, and brain imaging.

Book Search Methodologies

Download or read book Search Methodologies written by Edmund K. Burke and published by Springer Science & Business Media. This book was released on 2013-10-18 with total page 715 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques was originally put together to offer a basic introduction to the various search and optimization techniques that students might need to use during their research, and this new edition continues this tradition. Search Methodologies has been expanded and brought completely up to date, including new chapters covering scatter search, GRASP, and very large neighborhood search. The chapter authors are drawn from across Computer Science and Operations Research and include some of the world’s leading authorities in their field. The book provides useful guidelines for implementing the methods and frameworks described and offers valuable tutorials to students and researchers in the field. “As I embarked on the pleasant journey of reading through the chapters of this book, I became convinced that this is one of the best sources of introductory material on the search methodologies topic to be found. The book’s subtitle, “Introductory Tutorials in Optimization and Decision Support Techniques”, aptly describes its aim, and the editors and contributors to this volume have achieved this aim with remarkable success. The chapters in this book are exemplary in giving useful guidelines for implementing the methods and frameworks described.” Fred Glover, Leeds School of Business, University of Colorado Boulder, USA “[The book] aims to present a series of well written tutorials by the leading experts in their fields. Moreover, it does this by covering practically the whole possible range of topics in the discipline. It enables students and practitioners to study and appreciate the beauty and the power of some of the computational search techniques that are able to effectively navigate through search spaces that are sometimes inconceivably large. I am convinced that this second edition will build on the success of the first edition and that it will prove to be just as popular.” Jacek Blazewicz, Institute of Computing Science, Poznan University of Technology and Institute of Bioorganic Chemistry, Polish Academy of Sciences