EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mixed Effects Models for Complex Data

Download or read book Mixed Effects Models for Complex Data written by Lang Wu and published by CRC Press. This book was released on 2009-11-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.

Book Transportation Research Record

Download or read book Transportation Research Record written by and published by . This book was released on 1980 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Bayesian Data Analysis  Third Edition

Download or read book Bayesian Data Analysis Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Book Econometric Analysis of Cross Section and Panel Data  second edition

Download or read book Econometric Analysis of Cross Section and Panel Data second edition written by Jeffrey M. Wooldridge and published by MIT Press. This book was released on 2010-10-01 with total page 1095 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.

Book Methods and Applications of Longitudinal Data Analysis

Download or read book Methods and Applications of Longitudinal Data Analysis written by Xian Liu and published by Elsevier. This book was released on 2015-09-01 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods and Applications of Longitudinal Data Analysis describes methods for the analysis of longitudinal data in the medical, biological and behavioral sciences. It introduces basic concepts and functions including a variety of regression models, and their practical applications across many areas of research. Statistical procedures featured within the text include: - descriptive methods for delineating trends over time - linear mixed regression models with both fixed and random effects - covariance pattern models on correlated errors - generalized estimating equations - nonlinear regression models for categorical repeated measurements - techniques for analyzing longitudinal data with non-ignorable missing observations Emphasis is given to applications of these methods, using substantial empirical illustrations, designed to help users of statistics better analyze and understand longitudinal data. Methods and Applications of Longitudinal Data Analysis equips both graduate students and professionals to confidently apply longitudinal data analysis to their particular discipline. It also provides a valuable reference source for applied statisticians, demographers and other quantitative methodologists. - From novice to professional: this book starts with the introduction of basic models and ends with the description of some of the most advanced models in longitudinal data analysis - Enables students to select the correct statistical methods to apply to their longitudinal data and avoid the pitfalls associated with incorrect selection - Identifies the limitations of classical repeated measures models and describes newly developed techniques, along with real-world examples.

Book Mixed Models

    Book Details:
  • Author : Eugene Demidenko
  • Publisher : John Wiley & Sons
  • Release : 2013-08-05
  • ISBN : 1118091574
  • Pages : 768 pages

Download or read book Mixed Models written by Eugene Demidenko and published by John Wiley & Sons. This book was released on 2013-08-05 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition “This book will serve to greatly complement the growing number of texts dealing with mixed models, and I highly recommend including it in one’s personal library.” —Journal of the American Statistical Association Mixed modeling is a crucial area of statistics, enabling the analysis of clustered and longitudinal data. Mixed Models: Theory and Applications with R, Second Edition fills a gap in existing literature between mathematical and applied statistical books by presenting a powerful examination of mixed model theory and application with special attention given to the implementation in R. The new edition provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as nontraditional applications, such as regrowth curves, shapes, and images. The book features the latest topics in statistics including modeling of complex clustered or longitudinal data, modeling data with multiple sources of variation, modeling biological variety and heterogeneity, Healthy Akaike Information Criterion (HAIC), parameter multidimensionality, and statistics of image processing. Mixed Models: Theory and Applications with R, Second Edition features unique applications of mixed model methodology, as well as: Comprehensive theoretical discussions illustrated by examples and figures Over 300 exercises, end-of-section problems, updated data sets, and R subroutines Problems and extended projects requiring simulations in R intended to reinforce material Summaries of major results and general points of discussion at the end of each chapter Open problems in mixed modeling methodology, which can be used as the basis for research or PhD dissertations Ideal for graduate-level courses in mixed statistical modeling, the book is also an excellent reference for professionals in a range of fields, including cancer research, computer science, and engineering.

Book Linear Probability  Logit  and Probit Models

Download or read book Linear Probability Logit and Probit Models written by John H. Aldrich and published by SAGE. This book was released on 1984-11 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: After showing why ordinary regression analysis is not appropriate for investigating dichotomous or otherwise 'limited' dependent variables, this volume examines three techniques which are well suited for such data. It reviews the linear probability model and discusses alternative specifications of non-linear models.

Book Econometric Models For Industrial Organization

Download or read book Econometric Models For Industrial Organization written by Matthew Shum and published by World Scientific. This book was released on 2016-12-14 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Economic Models for Industrial Organization focuses on the specification and estimation of econometric models for research in industrial organization. In recent decades, empirical work in industrial organization has moved towards dynamic and equilibrium models, involving econometric methods which have features distinct from those used in other areas of applied economics. These lecture notes, aimed for a first or second-year PhD course, motivate and explain these econometric methods, starting from simple models and building to models with the complexity observed in typical research papers. The covered topics include discrete-choice demand analysis, models of dynamic behavior and dynamic games, multiple equilibria in entry games and partial identification, and auction models.

Book Recent Advances and Trends in Nonparametric Statistics

Download or read book Recent Advances and Trends in Nonparametric Statistics written by M.G. Akritas and published by Elsevier. This book was released on 2003-10-31 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of high-speed, affordable computers in the last two decades has given a new boost to the nonparametric way of thinking. Classical nonparametric procedures, such as function smoothing, suddenly lost their abstract flavour as they became practically implementable. In addition, many previously unthinkable possibilities became mainstream; prime examples include the bootstrap and resampling methods, wavelets and nonlinear smoothers, graphical methods, data mining, bioinformatics, as well as the more recent algorithmic approaches such as bagging and boosting. This volume is a collection of short articles - most of which having a review component - describing the state-of-the art of Nonparametric Statistics at the beginning of a new millennium. Key features: . algorithic approaches . wavelets and nonlinear smoothers . graphical methods and data mining . biostatistics and bioinformatics . bagging and boosting . support vector machines . resampling methods

Book Generalized Latent Variable Modeling

Download or read book Generalized Latent Variable Modeling written by Anders Skrondal and published by CRC Press. This book was released on 2004-05-11 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models. Following a gentle introduction to latent variable modeling, the authors clearly explain and contrast a wi

Book Modeling Ordered Choices

Download or read book Modeling Ordered Choices written by William H. Greene and published by Cambridge University Press. This book was released on 2010-04-08 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.

Book Statistical Methods for Categorical Data Analysis

Download or read book Statistical Methods for Categorical Data Analysis written by Daniel Powers and published by Emerald Group Publishing. This book was released on 2008-11-13 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to methods and models for categorical data analysis and their applications in social science research. Companion website also available, at https://webspace.utexas.edu/dpowers/www/

Book Microeconometrics

Download or read book Microeconometrics written by A. Colin Cameron and published by Cambridge University Press. This book was released on 2005-05-09 with total page 1058 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the most comprehensive treatment to date of microeconometrics, the analysis of individual-level data on the economic behavior of individuals or firms using regression methods for cross section and panel data. The book is oriented to the practitioner. A basic understanding of the linear regression model with matrix algebra is assumed. The text can be used for a microeconometrics course, typically a second-year economics PhD course; for data-oriented applied microeconometrics field courses; and as a reference work for graduate students and applied researchers who wish to fill in gaps in their toolkit. Distinguishing features of the book include emphasis on nonlinear models and robust inference, simulation-based estimation, and problems of complex survey data. The book makes frequent use of numerical examples based on generated data to illustrate the key models and methods. More substantially, it systematically integrates into the text empirical illustrations based on seven large and exceptionally rich data sets.

Book Longitudinal and Panel Data

Download or read book Longitudinal and Panel Data written by Edward W. Frees and published by Cambridge University Press. This book was released on 2004-08-16 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to foundations and applications for quantitatively oriented graduate social-science students and individual researchers.

Book Applying Generalized Linear Models

Download or read book Applying Generalized Linear Models written by James K. Lindsey and published by Springer Science & Business Media. This book was released on 2008-01-15 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes how generalised linear modelling procedures can be used in many different fields, without becoming entangled in problems of statistical inference. The author shows the unity of many of the commonly used models and provides readers with a taste of many different areas, such as survival models, time series, and spatial analysis, and of their unity. As such, this book will appeal to applied statisticians and to scientists having a basic grounding in modern statistics. With many exercises at the end of each chapter, it will equally constitute an excellent text for teaching applied statistics students and non- statistics majors. The reader is assumed to have knowledge of basic statistical principles, whether from a Bayesian, frequentist, or direct likelihood point of view, being familiar at least with the analysis of the simpler normal linear models, regression and ANOVA.

Book Logit and Probit

    Book Details:
  • Author : Vani K. Borooah
  • Publisher : SAGE
  • Release : 2002
  • ISBN : 9780761922421
  • Pages : 108 pages

Download or read book Logit and Probit written by Vani K. Borooah and published by SAGE. This book was released on 2002 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems in the social sciences are amenable to analysis using the analytical tools of logit and probit models. This book explains what ordered and multinomial models are and also shows how to apply them to analysing issues in the social sciences.

Book Functional Form and Heterogeneity in Models for Count Data

Download or read book Functional Form and Heterogeneity in Models for Count Data written by William Greene and published by Now Publishers Inc. This book was released on 2007 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study presents several extensions of the most familiar models for count data, the Poisson and negative binomial models. We develop an encompassing model for two well-known variants of the negative binomial model (the NB1 and NB2 forms). We then analyze some alternative approaches to the standard log gamma model for introducing heterogeneity into the loglinear conditional means for these models. The lognormal model provides a versatile alternative specification that is more flexible (and more natural) than the log gamma form, and provides a platform for several "two part" extensions, including zero inflation, hurdle, and sample selection models. (We briefly present some alternative approaches to modeling heterogeneity.) We also resolve some features in Hausman, Hall and Griliches (1984, Economic models for count data with an application to the patents-R & D relationship, Econometrica 52, 909-938) widely used panel data treatments for the Poisson and negative binomial models that appear to conflict with more familiar models of fixed and random effects. Finally, we consider a bivariate Poisson model that is also based on the lognormal heterogeneity model. Two recent applications have used this model. We suggest that the correlation estimated in their model frameworks is an ambiguous measure of the correlation of the variables of interest, and may substantially overstate it. We conclude with a detailed application of the proposed methods using the data employed in one of the two aforementioned bivariate Poisson studies