Download or read book Finite Mixture and Markov Switching Models written by Sylvia Frühwirth-Schnatter and published by Springer Science & Business Media. This book was released on 2006-11-24 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decade has seen powerful new computational tools for modeling which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book is the first to offer a systematic presentation of the Bayesian perspective of finite mixture modelling. The book is designed to show finite mixture and Markov switching models are formulated, what structures they imply on the data, their potential uses, and how they are estimated. Presenting its concepts informally without sacrificing mathematical correctness, it will serve a wide readership including statisticians as well as biologists, economists, engineers, financial and market researchers.
Download or read book Dissertation Abstracts International written by and published by . This book was released on 2004 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Discrete Choice Methods with Simulation written by Kenneth Train and published by Cambridge University Press. This book was released on 2009-07-06 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
Download or read book Finite Mixture Models written by Geoffrey McLachlan and published by John Wiley & Sons. This book was released on 2004-03-22 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
Download or read book Knowledge Based Intelligent Information and Engineering Systems 2 written by Mircea Gh. Negoita and published by Springer Science & Business Media. This book was released on 2004-09-20 with total page 1359 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three-volume set LNAI 3213, LNAI 3214, and LNAI 3215 constitutes the refereed proceedings of the 8th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2004, held in Wellington, New Zealand in September 2004.The over 450 papers presented were carefully reviewed and selected from numerous submissions. The papers present a wealth of original research results from the field of intelligent information processing in the broadest sense; among the areas covered are artificial intelligence, computational intelligence, cognitive technologies, soft computing, data mining, knowledge processing, various new paradigms in biologically inspired computing, and applications in various domains like bioinformatics, finance, signal processing etc.
Download or read book Applied Bayesian Hierarchical Methods written by Peter D. Congdon and published by CRC Press. This book was released on 2010-05-19 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of Markov chain Monte Carlo (MCMC) methods for estimating hierarchical models involves complex data structures and is often described as a revolutionary development. An intermediate-level treatment of Bayesian hierarchical models and their applications, Applied Bayesian Hierarchical Methods demonstrates the advantages of a Bayesian approach
Download or read book Mixture Models written by Weixin Yao and published by CRC Press. This book was released on 2024-04-18 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixture models are a powerful tool for analyzing complex and heterogeneous datasets across many scientific fields, from finance to genomics. Mixture Models: Parametric, Semiparametric, and New Directions provides an up-to-date introduction to these models, their recent developments, and their implementation using R. It fills a gap in the literature by covering not only the basics of finite mixture models, but also recent developments such as semiparametric extensions, robust modeling, label switching, and high-dimensional modeling. Features Comprehensive overview of the methods and applications of mixture models Key topics include hypothesis testing, model selection, estimation methods, and Bayesian approaches Recent developments, such as semiparametric extensions, robust modeling, label switching, and high-dimensional modeling Examples and case studies from such fields as astronomy, biology, genomics, economics, finance, medicine, engineering, and sociology Integrated R code for many of the models, with code and data available in the R Package MixSemiRob Mixture Models: Parametric, Semiparametric, and New Directions is a valuable resource for researchers and postgraduate students from statistics, biostatistics, and other fields. It could be used as a textbook for a course on model-based clustering methods, and as a supplementary text for courses on data mining, semiparametric modeling, and high-dimensional data analysis.
Download or read book Finite Mixture Distributions written by B. Everitt and published by Springer Science & Business Media. This book was released on 2013-03-08 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite mixture distributions arise in a variety of applications ranging from the length distribution of fish to the content of DNA in the nuclei of liver cells. The literature surrounding them is large and goes back to the end of the last century when Karl Pearson published his well-known paper on estimating the five parameters in a mixture of two normal distributions. In this text we attempt to review this literature and in addition indicate the practical details of fitting such distributions to sample data. Our hope is that the monograph will be useful to statisticians interested in mixture distributions and to re search workers in other areas applying such distributions to their data. We would like to express our gratitude to Mrs Bertha Lakey for typing the manuscript. Institute oj Psychiatry B. S. Everitt University of London D. l Hand 1980 CHAPTER I General introduction 1. 1 Introduction This monograph is concerned with statistical distributions which can be expressed as superpositions of (usually simpler) component distributions. Such superpositions are termed mixture distributions or compound distributions. For example, the distribution of height in a population of children might be expressed as follows: h(height) = fg(height: age)f(age)d age (1. 1) where g(height: age) is the conditional distribution of height on age, and/(age) is the age distribution of the children in the population.
Download or read book Dynamic Linear Models with R written by Giovanni Petris and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.
Download or read book The Skew Normal and Related Families written by Adelchi Azzalini and published by Cambridge University Press. This book was released on 2014 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: The standard resource for statisticians and applied researchers. Accessible to the wide range of researchers who use statistical modelling techniques.
Download or read book Generative Methods for Social Media Analysis written by Stan Matwin and published by Springer Nature. This book was released on 2023-07-05 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad overview of the state of the art of the research in generative methods for the analysis of social media data. It especially includes two important aspects that currently gain importance in mining and modelling social media: dynamics and networks. The book is divided into five chapters and provides an extensive bibliography consisting of more than 250 papers. After a quick introduction and survey of the book in the first chapter, chapter 2 is devoted to the discussion of data models and ontologies for social network analysis. Next, chapter 3 deals with text generation and generative text models and the dangers they pose to social media and society at large. Chapter 4 then focuses on topic modelling and sentiment analysis in the context of social networks. Finally, Chapter 5 presents graph theory tools and approaches to mine and model social networks. Throughout the book, open problems, highlighting potential future directions, are clearly identified. The book aims at researchers and graduate students in social media analysis, information retrieval, and machine learning applications.
Download or read book Machine Learning and Knowledge Discovery in Databases written by Peter A. Flach and published by Springer. This book was released on 2012-09-11 with total page 891 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set LNAI 7523 and LNAI 7524 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2012, held in Bristol, UK, in September 2012. The 105 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 443 submissions. The final sections of the proceedings are devoted to Demo and Nectar papers. The Demo track includes 10 papers (from 19 submissions) and the Nectar track includes 4 papers (from 14 submissions). The papers grouped in topical sections on association rules and frequent patterns; Bayesian learning and graphical models; classification; dimensionality reduction, feature selection and extraction; distance-based methods and kernels; ensemble methods; graph and tree mining; large-scale, distributed and parallel mining and learning; multi-relational mining and learning; multi-task learning; natural language processing; online learning and data streams; privacy and security; rankings and recommendations; reinforcement learning and planning; rule mining and subgroup discovery; semi-supervised and transductive learning; sensor data; sequence and string mining; social network mining; spatial and geographical data mining; statistical methods and evaluation; time series and temporal data mining; and transfer learning.
Download or read book Regression Analysis of Count Data written by A. Colin Cameron and published by Cambridge University Press. This book was released on 1998-09-28 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This analysis provides a comprehensive account of models and methods to interpret frequency data.
Download or read book Mixtures written by Kerrie L. Mengersen and published by John Wiley & Sons. This book was released on 2011-05-03 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a complete account of the applications, mathematical structure and statistical analysis of finite mixture distributions along with MCMC computational methods, together with a range of detailed discussions covering the applications of the methods and features chapters from the leading experts on the subject. The applications are drawn from scientific discipline, including biostatistics, computer science, ecology and finance. This area of statistics is important to a range of disciplines, and its methodology attracts interest from researchers in the fields in which it can be applied.
Download or read book Mixture Model Based Classification written by Paul D. McNicholas and published by CRC Press. This book was released on 2016-10-04 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is a great overview of the field of model-based clustering and classification by one of its leading developers. McNicholas provides a resource that I am certain will be used by researchers in statistics and related disciplines for quite some time. The discussion of mixtures with heavy tails and asymmetric distributions will place this text as the authoritative, modern reference in the mixture modeling literature." (Douglas Steinley, University of Missouri) Mixture Model-Based Classification is the first monograph devoted to mixture model-based approaches to clustering and classification. This is both a book for established researchers and newcomers to the field. A history of mixture models as a tool for classification is provided and Gaussian mixtures are considered extensively, including mixtures of factor analyzers and other approaches for high-dimensional data. Non-Gaussian mixtures are considered, from mixtures with components that parameterize skewness and/or concentration, right up to mixtures of multiple scaled distributions. Several other important topics are considered, including mixture approaches for clustering and classification of longitudinal data as well as discussion about how to define a cluster Paul D. McNicholas is the Canada Research Chair in Computational Statistics at McMaster University, where he is a Professor in the Department of Mathematics and Statistics. His research focuses on the use of mixture model-based approaches for classification, with particular attention to clustering applications, and he has published extensively within the field. He is an associate editor for several journals and has served as a guest editor for a number of special issues on mixture models.
Download or read book Applied Bayesian Modelling written by Peter Congdon and published by John Wiley & Sons. This book was released on 2014-05-23 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBUGS and OPENBUGS. This feature continues in the new edition along with examples using R to broaden appeal and for completeness of coverage.
Download or read book The Econometrics of Multi dimensional Panels written by Laszlo Matyas and published by Springer. This book was released on 2017-07-26 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the econometric foundations and applications of multi-dimensional panels, including modern methods of big data analysis. The last two decades or so, the use of panel data has become a standard in many areas of economic analysis. The available models formulations became more complex, the estimation and hypothesis testing methods more sophisticated. The interaction between economics and econometrics resulted in a huge publication output, deepening and widening immensely our knowledge and understanding in both. The traditional panel data, by nature, are two-dimensional. Lately, however, as part of the big data revolution, there has been a rapid emergence of three, four and even higher dimensional panel data sets. These have started to be used to study the flow of goods, capital, and services, but also some other economic phenomena that can be better understood in higher dimensions. Oddly, applications rushed ahead of theory in this field. This book is aimed at filling this widening gap. The first theoretical part of the volume is providing the econometric foundations to deal with these new high-dimensional panel data sets. It not only synthesizes our current knowledge, but mostly, presents new research results. The second empirical part of the book provides insight into the most relevant applications in this area. These chapters are a mixture of surveys and new results, always focusing on the econometric problems and feasible solutions.