Download or read book Higher Order Finite Element Methods written by Pavel Solin and published by CRC Press. This book was released on 2003-07-28 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: The finite element method has always been a mainstay for solving engineering problems numerically. The most recent developments in the field clearly indicate that its future lies in higher-order methods, particularly in higher-order hp-adaptive schemes. These techniques respond well to the increasing complexity of engineering simulations and
Download or read book Meshfree Methods for Partial Differential Equations II written by Michael Griebel and published by Springer Science & Business Media. This book was released on 2006-09-21 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical treatment of partial differential equations with particle methods and meshfree discretization techniques is a very active research field both in the mathematics and engineering community. Due to their independence of a mesh, particle schemes and meshfree methods can deal with large geometric changes of the domain more easily than classical discretization techniques. Furthermore, meshfree methods offer a promising approach for the coupling of particle models to continuous models. This volume of LNCSE is a collection of the papers from the proceedings of the Second International Workshop on Meshfree Methods held in September 2003 in Bonn. The articles address the different meshfree methods (SPH, PUM, GFEM, EFGM, RKPM, etc.) and their application in applied mathematics, physics and engineering. The volume is intended to foster this new and exciting area of interdisciplinary research and to present recent advances and results in this field.
Download or read book A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations written by Marc Alexander Schweitzer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: the solution or its gradient. These new discretization techniques are promising approaches to overcome the severe problem of mesh-generation. Furthermore, the easy coupling of meshfree discretizations of continuous phenomena to dis crete particle models and the straightforward Lagrangian treatment of PDEs via these techniques make them very interesting from a practical as well as a theoretical point of view. Generally speaking, there are two different types of meshfree approaches; first, the classical particle methods [104, 105, 107, 108] and second, meshfree discretizations based on data fitting techniques [13, 39]. Traditional parti cle methods stem from physics applications like Boltzmann equations [3, 50] and are also of great interest in the mathematical modeling community since many applications nowadays require the use of molecular and atomistic mod els (for instance in semi-conductor design). Note however that these methods are Lagrangian methods; i. e. , they are based On a time-dependent formulation or conservation law and can be applied only within this context. In a particle method we use a discrete set of points to discretize the domain of interest and the solution at a certain time. The PDE is then transformed into equa tions of motion for the discrete particles such that the particles can be moved via these equations. After time discretization of the equations of motion we obtain a certain particle distribution for every time step.
Download or read book Mathematical and Computational Techniques for Multilevel Adaptive Methods written by Ulrich Ruede and published by SIAM. This book was released on 1993-01-01 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multilevel adaptive methods play an increasingly important role in the solution of many scientific and engineering problems. Fast adaptive methods techniques are widely used by specialists to execute and analyze simulation and optimization problems. This monograph presents a unified approach to adaptive methods, addressing their mathematical theory, efficient algorithms, and flexible data structures. Rüde introduces a well-founded mathematical theory that leads to intelligent, adaptive algorithms, and suggests advanced software techniques. This new kind of multigrid theory supports the so-called "BPX" and "multilevel Schwarz" methods, and leads to the discovery of faster more robust algorithms. These techniques are deeply rooted in the theory of function spaces. Mathematical and Computational Techniques for Multilevel Adaptive Methods examines this development together with its implications for relevant algorithms for adaptive PDE methods. The author shows how abstract data types and object-oriented programming can be used for improved implementation.
Download or read book Journal of Numerical Mathematics written by and published by . This book was released on 2007 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Research in Progress written by and published by . This book was released on 1980 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Acta Numerica 2006 Volume 15 written by Arieh Iserles and published by Cambridge University Press. This book was released on 2006-08-03 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: A high-impact factor, prestigious annual publication containing invited surveys by subject leaders: essential reading for all practitioners and researchers.
Download or read book Multilevel Projection Methods for Partial Differential Equations written by Stephen F. McCormick and published by SIAM. This book was released on 1992-01-01 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: The multilevel projection method is a new formalism that provides a framework for the development of multilevel algorithms in a very general setting. This methodology guides the choices of all the major multilevel processes, including relaxation and coarsening, and it applies directly to global or locally-refined discretizations. This book was developed from lectures at the CBMS-NSF Regional Conference on Multigrid and Multilevel Adaptive Methods for Partial Differential Equations in June 1991, and is a supplement to Multilevel Adaptive Methods for Partial Differential Equations, also written by Stephen F. McCormick.
Download or read book Theory of Deformable Bodies written by Eugène Maurice Pierre Cosserat and published by . This book was released on 1970 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Galerkin Finite Element Methods for Parabolic Problems written by Vidar Thomee and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin finite element methods as applied to parabolic partial differential equations. The emphases and selection of topics reflects my own involvement in the field over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin finite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doing so I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by first treating the time discretization of an abstract differential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.
Download or read book Smoothed Finite Element Methods written by G.R. Liu and published by CRC Press. This book was released on 2016-04-19 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generating a quality finite element mesh is difficult and often very time-consuming. Mesh-free methods operations can also be complicated and quite costly in terms of computational effort and resources. Developed by the authors and their colleagues, the smoothed finite element method (S-FEM) only requires a triangular/tetrahedral mesh to achieve mo
Download or read book Scientific Computing in Electrical Engineering written by Ursula van Rienen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: rd This book presents a collection of selected contributions presented at the 3 International Workshop on Scientific Computing in Electrical Engineering, SCEE-2000, which took place in Warnemiinde, Germany, from August 20 to 23, 2000. Nearly hundred scientists and engineers from thirteen countries gathered in Warnemiinde to participate in the conference. Rostock Univer sity, the oldest university in Northern Europe founded in 1419, hosted the conference. This workshop followed two earlier workshops held 1997 at the Darmstadt University of Technology and 1998 at Weierstrass Institute for Applied Anal ysis and Stochastics in Berlin under the auspices ofthe German Mathematical Society. These workshops aimed at bringing together two scientific communi ties: applied mathematicians and electrical engineers who do research in the field of scientific computing in electrical engineering. This, of course, is a wide field, which is why it was decided to concentrate on selected major topics. The workshop in Darmstadt, which was organized by Michael Giinther from the Mathematics Department and Ursula van Rienen from the Department of Electrical Engineering and Information Technology,brought together more than hundred scientists interested in numerical methods for the simulation of circuits and electromagnetic fields. This was a great success. Voices coming from the participants suggested that it was time to bring these communities together in order to get to know each other, to discuss mutual interests and to start cooperative work. A collection of selected contributions appeared in 'Surveys on Mathematics for Industry', Vol.8, No. 3-4 and Vol.9, No.2, 1999.
Download or read book Non standard Discretisation Methods in Solid Mechanics written by Jörg Schröder and published by Springer Nature. This book was released on 2022-04-14 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume summarizes research being pursued within the DFG Priority Programme 1748: "Reliable Simulation Methods in Solid Mechanics. Development of non-standard discretisation methods, mechanical and mathematical analysis", the aim of which was to develop novel discretisation methods based e.g. on mixed finite element methods, isogeometric approaches as well as discontinuous Galerkin formulations, including a sound mathematical analysis for geometrically as well as physically nonlinear problems. The Priority Programme has established an international framework for mechanical and applied mathematical research to pursue open challenges on an inter-disciplinary level. The compiled results can be understood as state of the art in the research field and show promising ways of further research in the respective areas. The book is intended for doctoral and post-doctoral students in civil engineering, mechanical engineering, applied mathematics and physics, as well as industrial researchers interested in the field.
Download or read book Dissertation Abstracts International written by and published by . This book was released on 2009 with total page 840 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Wavelets Multilevel Methods and Elliptic PDEs written by M. Ainsworth and published by Oxford University Press. This book was released on 1997 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the Proceedings of the seventh EPSRC Numerical Analysis Summer School, held in 1996. Five major topics in numerical analysis are treated by world experts at a level which should be suitable for first year graduate students and experienced researchers alike, assuming onlythe knowledge acquired from a first degree in mathematics or in a scientific discipline with significant mathematical content. Often researchers need to obtain an up-to-date picture of work in an area with a substantial literature, either to avoid reproducing work which is already done, or to applyto their own research in a different subject. This book avoids the need to trawl through the literature by presenting important recent results together with references to all the main papers. Each contributor reviews the state of the art in his area, presenting new and often hitherto unpublishedmaterial.
Download or read book Research in Progress Between and written by United States. Army Research Office and published by . This book was released on 1978 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Lectures on Advanced Computational Methods in Mechanics written by Johannes Kraus and published by Walter de Gruyter. This book was released on 2011-12-22 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains four survey papers related to different topics in computational mechanics, in particular (1) novel discretization and solver techniques in mechanics and (2) inverse, control, and optimization problems in mechanics. These topics were considered in lectures, seminars, tutorials, and workshops at the Special Semester on Computational Mechanics held at the Johann Radon Institute for Computational and Applied Mathematics (RICAM), Linz, Austria, in December 2005.