Download or read book Multifractals and 1 Noise written by Benoit B. Mandelbrot and published by Springer. This book was released on 2013-12-20 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mandelbrot is a world renowned scientist, known for his pioneering research in fractal geometry and chaos theory. In this volume, Mandelbrot defends the view that multifractals are intimately interrelated through the two fractal themes of "wildness" and "self-affinity". This link involves a powerful collection of technical tools, which are of use to diverse scientific communities. Among the topics covered are: 1/f noise, fractal dimension and turbulence, sporadic random functions, and a new model for error clustering on telephone circuits.
Download or read book Fractal Analysis written by Fernando Brambila and published by BoD – Books on Demand. This book was released on 2017-06-14 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractal analysis has entered a new era. The applications to different areas of knowledge have been surprising. Let us begin with the fractional calculus-fractal geometry relationship, which allows for modeling with extreme precision of phenomena such as diffusion in porous media with fractional partial differential equations in fractal objects. Where the order of the equation is the same as the fractal dimension, this allows us to make calculations with enormous precision in diffusion phenomena-particularly in the oil industry, for new spillage prevention. Main applications to industry, design of fractal antennas to receive all frequencies and that is used in all cell phones, spacecraft, radars, image processing, measure, porosity, turbulence, scattering theory. Benoit Mandelbrot, creator of fractal geometry, would have been surprised by the use of fractal analysis presented in this book: "Part I: Petroleum Industry and Numerical Analysis"; "Part II: Fractal Antennas, Spacecraft, Radars, Image Processing, and Measure"; and "Part III: Scattering Theory, Porosity, and Turbulence." It's impossible to picture today's research without fractal analysis.
Download or read book Dynamical Systems Approach to Turbulence written by Tomas Bohr and published by Cambridge University Press. This book was released on 2005-08-22 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent decades, turbulence has evolved into a very active field of theoretical physics. The origin of this development is the approach to turbulence from the point of view of deterministic dynamical systems, and this book shows how concepts developed for low dimensional chaotic systems are applied to turbulent states. This book centers around a number of important simplified models for turbulent behavior in systems ranging from fluid motion (classical turbulence) to chemical reactions and interfaces in disordered systems. The theory of fractals and multifractals now plays a major role in turbulence research, and turbulent states are being studied as important dynamical states of matter occurring also in systems outside the realm of hydrodynamics. The book contains simplified models of turbulent behavior, notably shell models, coupled map lattices, amplitude equations and interface models.
Download or read book Thermoacoustic Instability written by R. I. Sujith and published by Springer Nature. This book was released on 2021-12-14 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book systematically presents the consolidated findings of the phenomenon of self-organization observed during the onset of thermoacoustic instability using approaches from dynamical systems and complex systems theory. Over the last decade, several complex dynamical states beyond limit cycle oscillations such as quasiperiodicity, frequency-locking, period-n, chaos, strange non-chaos, and intermittency have been discovered in thermoacoustic systems operated in laminar and turbulent flow regimes. During the onset of thermoacoustic instability in turbulent systems, an ordered acoustic field and large coherent vortices emerge from the background of turbulent combustion. This emergence of order from disorder in both temporal and spatiotemporal dynamics is explored in the contexts of synchronization, pattern formation, collective interaction, multifractality, and complex networks. For the past six decades, the spontaneous emergence of large amplitude, self-sustained, tonal oscillations in confined combustion systems, characterized as thermoacoustic instability, has remained one of the most challenging areas of research. The presence of such instabilities continues to hinder the development and deployment of high-performance combustion systems used in power generation and propulsion applications. Even with the advent of sophisticated measurement techniques to aid experimental investigations and vast improvements in computational power necessary to capture flow physics in high fidelity simulations, conventional reductionist approaches have not succeeded in explaining the plethora of dynamical behaviors and the associated complexities that arise in practical combustion systems. As a result, models and theories based on such approaches are limited in their application to mitigate or evade thermoacoustic instabilities, which continue to be among the biggest concerns for engine manufacturers today. This book helps to overcome these limitations by providing appropriate methodologies to deal with nonlinear thermoacoustic oscillations, and by developing control strategies that can mitigate and forewarn thermoacoustic instabilities. The book is also beneficial to scientists and engineers studying the occurrence of several other instabilities, such as flow-induced vibrations, compressor surge, aeroacoustics and aeroelastic instabilities in diverse fluid-mechanical environments, to graduate students who intend to apply dynamical systems and complex systems approach to their areas of research, and to physicists who look for experimental applications of their theoretical findings on nonlinear and complex systems.
Download or read book The Weather and Climate written by Shaun Lovejoy and published by Cambridge University Press. This book was released on 2013-04-04 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new method of modeling the atmosphere, synthesizing data analysis techniques and multifractal statistics, for atmospheric researchers and graduate students.
Download or read book Fractals and Multifractals in Ecology and Aquatic Science written by Laurent Seuront and published by CRC Press. This book was released on 2009-10-12 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ecologists sometimes have a less-than-rigorous background in quantitative methods, yet research within this broad field is becoming increasingly mathematical. Written in a step-by-step fashion, Fractals and Multifractals in Ecology and Aquatic Science provides scientists with a basic understanding of fractals and multifractals and the techniques fo
Download or read book Fractal Flow Design How to Design Bespoke Turbulence and Why written by Yasuhiko Sakai and published by Springer. This book was released on 2016-06-21 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on turbulent flows generated and/or influenced by multiscale/fractal structures. It consists of six chapters which demonstrate, each one in its own way, how such structures and objects can be used to design bespoke turbulence for particular applications and also how they can be used for fundamental studies of turbulent flows.
Download or read book Fractals in Geophysics written by SCHOLZ and published by Birkhäuser. This book was released on 2013-11-22 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reprint from Pure and Applied Geophysics (PAGEOPH), Volume 131 (1989), No. 1
Download or read book Turbulence written by Uriel Frisch and published by Cambridge University Press. This book was released on 1995-11-30 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents a modern account of turbulence, one of the greatest challenges in physics. The state-of-the-art is put into historical perspective five centuries after the first studies of Leonardo and half a century after the first attempt by A. N. Kolmogorov to predict the properties of flow at very high Reynolds numbers. Such 'fully developed turbulence' is ubiquitous in both cosmical and natural environments, in engineering applications and in everyday life. The intended readership for the book ranges from first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, to professional scientists and engineers. Elementary presentations of dynamical systems ideas, of probabilistic methods (including the theory of large deviations) and of fractal geometry make this a self-contained textbook.
Download or read book Turbulence and Diffusion written by Oleg G. Bakunin and published by Springer Science & Business Media. This book was released on 2008-08-15 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to serve as an introduction to the multidisciplinary ?eld of anomalous diffusion in complex systems such as turbulent plasma, convective rolls, zonal ?ow systems, stochastic magnetic ?elds, etc. In spite of its great importance, turbulent transport has received comparatively little treatment in published mo- graphs. This book attempts a comprehensive description of the scaling approach to turbulent diffusion. From the methodological point of view, the book focuses on the general use of correlation estimates, quasilinear equations, and continuous time random walk - proach. I provide a detailed structure of some derivations when they may be useful for more general purposes. Correlation methods are ?exible tools to obtain tra- port scalings that give priority to the richness of ingredients in a physical pr- lem. The mathematical description developed here is not meant to provide a set of “recipes” for hydrodynamical turbulence or plasma turbulence; rather, it serves to develop the reader’s physical intuition and understanding of the correlation mec- nisms involved.
Download or read book Fractals A Very Short Introduction written by Kenneth Falconer and published by OUP Oxford. This book was released on 2013-09-26 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many are familiar with the beauty and ubiquity of fractal forms within nature. Unlike the study of smooth forms such as spheres, fractal geometry describes more familiar shapes and patterns, such as the complex contours of coastlines, the outlines of clouds, and the branching of trees. In this Very Short Introduction, Kenneth Falconer looks at the roots of the 'fractal revolution' that occurred in mathematics in the 20th century, presents the 'new geometry' of fractals, explains the basic concepts, and explores the wide range of applications in science, and in aspects of economics. This is essential introductory reading for students of mathematics and science, and those interested in popular science and mathematics. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Download or read book The Turbulence Problem written by Michael Eckert and published by Springer Nature. This book was released on 2019-10-05 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: On the road toward a history of turbulence, this book focuses on what the actors in this research field have identified as the “turbulence problem”. Turbulent flow rose to prominence as one of the most persistent challenges in science. At different times and in different social and disciplinary settings, the nature of this problem has changed in response to changing research agendas. This book does not seek to provide a comprehensive account, but instead an exemplary exposition on the environments in which problems become the subjects of research agendas, with particular emphasis on the first half of the 20th century.
Download or read book The Mis Behaviour of Markets written by Benoit B. Mandelbrot and published by Profile Books. This book was released on 2010-10-01 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This international bestseller, which foreshadowed a market crash, explains why it could happen again if we don't act now. Fractal geometry is the mathematics of roughness: how to reduce the outline of a jagged leaf or static in a computer connection to a few simple mathematical properties. With his fractal tools, Mandelbrot has got to the bottom of how financial markets really work. He finds they have a shifting sense of time and wild behaviour that makes them volatile, dangerous - and beautiful. In his models, the complex gyrations of the FTSE 100 and exchange rates can be reduced to straightforward formulae that yield a much more accurate description of the risks involved.
Download or read book Gaussian Self Affinity and Fractals written by Benoit Mandelbrot and published by Springer Science & Business Media. This book was released on 2002 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third volume of the Selected Works focusses on a detailed study of fraction Brownian motions. The fractal themes of "self-affinity" and "globality" are presented, while extensive introductory material, written especially for this book, precedes the papers and presents a number of striking new observations and conjectures. The mathematical tools so discussed will be valuable to diverse scientific communities.
Download or read book Turbulence written by P. Tabeling and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume comprises the contributions of some of the participants of the NATO Advance Studies Institute "Turbulence, Weak and Strong", held in Cargese, in August 1994. More than 70 scientists, from seniors to young students, have joined to gether to discuss and review new (and not so new) ideas and developments in the study of turbulence. One of the objectives of the School was to incorporate, in the same meeting, two aspects of turbulence, which are obviously linked, and which are often treated sep arately: fully developed turbulence (in two and three dimensions) and weak turbulence (essentially one and two-dimensional systems). The idea of preparing a dictionary rather than ordinary proceedings started from the feeling that the terminology of turbulence includes many long, technical, poorly evocative words, which are usually not understood by people exterior to the field, and which might be worth explaining. Students who start working in the field of turbulence face a sort of curious situation: on one side, they are aware that turbulence is related to the disordered, churning flows of torrents, the pow erful movements of water in the oceans, the violent jet streams in the troposphere, the solar eruptions, and they are certainly excited to pierce the mystery of this fascinating, omnipresent phenomenon.
Download or read book Measure Topology and Fractal Geometry written by Gerald A. Edgar and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "In the world of mathematics, the 1980's might well be described as the "decade of the fractal". Starting with Benoit Mandelbrot's remarkable text The Fractal Geometry of Nature, there has been a deluge of books, articles and television programmes about the beautiful mathematical objects, drawn by computers using recursive or iterative algorithms, which Mandelbrot christened fractals. Gerald Edgar's book is a significant addition to this deluge. Based on a course given to talented high- school students at Ohio University in 1988, it is, in fact, an advanced undergraduate textbook about the mathematics of fractal geometry, treating such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology. However, the book also contains many good illustrations of fractals (including 16 color plates), together with Logo programs which were used to generate them. ... Here then, at last, is an answer to the question on the lips of so many: 'What exactly is a fractal?' I do not expect many of this book's readers to achieve a mature understanding of this answer to the question, but anyone interested in finding out about the mathematics of fractal geometry could not choose a better place to start looking." #Mathematics Teaching#1
Download or read book Turbulence written by Uriel Frisch and published by Cambridge University Press. This book was released on 1995-11-30 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents a modern account of turbulence, one of the greatest challenges in physics. The state-of-the-art is put into historical perspective five centuries after the first studies of Leonardo and half a century after the first attempt by A.N. Kolmogorov to predict the properties of flow at very high Reynolds numbers. Such "fully developed turbulence" is ubiquitous in both cosmical and natural environments, in engineering applications and in everyday life. First, a qualitative introduction is given to bring out the need for a probabilistic description of what is in essence a deterministic system. Kolmogorov's 1941 theory is presented in a novel fashion with emphasis on symmetries (including scaling transformations) which are broken by the mechanisms producing the turbulence and restored by the chaotic character of the cascade to small scales. Considerable material is devoted to intermittency, the clumpiness of small-scale activity, which has led to the development of fractal and multifractal models. Such models, pioneered by B. Mandelbrot, have applications in numerous fields besides turbulence (diffusion limited aggregation, solid-earth geophysics, attractors of dynamical systems, etc). The final chapter contains an introduction to analytic theories of the sort pioneered by R. Kraichnan, to the modern theory of eddy transport and renormalization and to recent developments in the statistical theory of two-dimensional turbulence. The book concludes with a guide to further reading. The intended readership for the book ranges from first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, to professional scientists and engineers.