EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Multidimensional Stationary Time Series

Download or read book Multidimensional Stationary Time Series written by Marianna Bolla and published by CRC Press. This book was released on 2021-04-29 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a brief survey of the theory of multidimensional (multivariate), weakly stationary time series, with emphasis on dimension reduction and prediction. Understanding the covered material requires a certain mathematical maturity, a degree of knowledge in probability theory, linear algebra, and also in real, complex and functional analysis. For this, the cited literature and the Appendix contain all necessary material. The main tools of the book include harmonic analysis, some abstract algebra, and state space methods: linear time-invariant filters, factorization of rational spectral densities, and methods that reduce the rank of the spectral density matrix. Serves to find analogies between classical results (Cramer, Wold, Kolmogorov, Wiener, Kálmán, Rozanov) and up-to-date methods for dimension reduction in multidimensional time series Provides a unified treatment for time and frequency domain inferences by using machinery of complex and harmonic analysis, spectral and Smith--McMillan decompositions. Establishes analogies between the time and frequency domain notions and calculations Discusses the Wold's decomposition and the Kolmogorov's classification together, by distinguishing between different types of singularities. Understanding the remote past helps us to characterize the ideal situation where there is a regular part at present. Examples and constructions are also given Establishes a common outline structure for the state space models, prediction, and innovation algorithms with unified notions and principles, which is applicable to real-life high frequency time series It is an ideal companion for graduate students studying the theory of multivariate time series and researchers working in this field.

Book Multidimensional Stationary Time Series

Download or read book Multidimensional Stationary Time Series written by Marianna Bolla and published by Chapman & Hall/CRC. This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book gives a brief survey of the theory of multidimensional (multivariate), weakly stationary time series, with emphasis on dimension reduction and prediction. Understanding the covered material requires a certain mathematical maturity, a degree of knowledge in probability theory, linear algebra, and also in real, complex and functional analysis. For this, the cited literature and the Appendix contain all necessary material. The main tools of the book include harmonic analysis, some abstract algebra, and state space methods: linear time-invariant filters, factorization of rational spectral densities, and methods that reduce the rank of the spectral density matrix"--

Book Multivariate Time Series Analysis and Applications

Download or read book Multivariate Time Series Analysis and Applications written by William W. S. Wei and published by John Wiley & Sons. This book was released on 2019-03-18 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: An essential guide on high dimensional multivariate time series including all the latest topics from one of the leading experts in the field Following the highly successful and much lauded book, Time Series Analysis—Univariate and Multivariate Methods, this new work by William W.S. Wei focuses on high dimensional multivariate time series, and is illustrated with numerous high dimensional empirical time series. Beginning with the fundamentalconcepts and issues of multivariate time series analysis,this book covers many topics that are not found in general multivariate time series books. Some of these are repeated measurements, space-time series modelling, and dimension reduction. The book also looks at vector time series models, multivariate time series regression models, and principle component analysis of multivariate time series. Additionally, it provides readers with information on factor analysis of multivariate time series, multivariate GARCH models, and multivariate spectral analysis of time series. With the development of computers and the internet, we have increased potential for data exploration. In the next few years, dimension will become a more serious problem. Multivariate Time Series Analysis and its Applications provides some initial solutions, which may encourage the development of related software needed for the high dimensional multivariate time series analysis. Written by bestselling author and leading expert in the field Covers topics not yet explored in current multivariate books Features classroom tested material Written specifically for time series courses Multivariate Time Series Analysis and its Applications is designed for an advanced time series analysis course. It is a must-have for anyone studying time series analysis and is also relevant for students in economics, biostatistics, and engineering.

Book Advance Trends in Soft Computing

Download or read book Advance Trends in Soft Computing written by Mo Jamshidi and published by Springer. This book was released on 2013-11-18 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the proceedings of the 3rd World Conference on Soft Computing (WCSC), which was held in San Antonio, TX, USA, on December 16-18, 2013. It presents start-of-the-art theory and applications of soft computing together with an in-depth discussion of current and future challenges in the field, providing readers with a 360 degree view on soft computing. Topics range from fuzzy sets, to fuzzy logic, fuzzy mathematics, neuro-fuzzy systems, fuzzy control, decision making in fuzzy environments, image processing and many more. The book is dedicated to Lotfi A. Zadeh, a renowned specialist in signal analysis and control systems research who proposed the idea of fuzzy sets, in which an element may have a partial membership, in the early 1960s, followed by the idea of fuzzy logic, in which a statement can be true only to a certain degree, with degrees described by numbers in the interval [0,1]. The performance of fuzzy systems can often be improved with the help of optimization techniques, e.g. evolutionary computation, and by endowing the corresponding system with the ability to learn, e.g. by combining fuzzy systems with neural networks. The resulting “consortium” of fuzzy, evolutionary, and neural techniques is known as soft computing and is the main focus of this book.

Book Time Series Analysis Univariate and Multivariate Methods

Download or read book Time Series Analysis Univariate and Multivariate Methods written by William W. S. Wei and published by Pearson. This book was released on 2018-03-14 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field.

Book Time Series Models

    Book Details:
  • Author : Manfred Deistler
  • Publisher : Springer Nature
  • Release : 2022-10-21
  • ISBN : 3031132130
  • Pages : 213 pages

Download or read book Time Series Models written by Manfred Deistler and published by Springer Nature. This book was released on 2022-10-21 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a self-contained presentation of the theory and models of time series analysis. Putting an emphasis on weakly stationary processes and linear dynamic models, it describes the basic concepts, ideas, methods and results in a mathematically well-founded form and includes numerous examples and exercises. The first part presents the theory of weakly stationary processes in time and frequency domain, including prediction and filtering. The second part deals with multivariate AR, ARMA and state space models, which are the most important model classes for stationary processes, and addresses the structure of AR, ARMA and state space systems, Yule-Walker equations, factorization of rational spectral densities and Kalman filtering. Finally, there is a discussion of Granger causality, linear dynamic factor models and (G)ARCH models. The book provides a solid basis for advanced mathematics students and researchers in fields such as data-driven modeling, forecasting and filtering, which are important in statistics, control engineering, financial mathematics, econometrics and signal processing, among other subjects.

Book Estimation of Stochastic Processes with Stationary Increments and Cointegrated Sequences

Download or read book Estimation of Stochastic Processes with Stationary Increments and Cointegrated Sequences written by Maksym Luz and published by John Wiley & Sons. This book was released on 2019-12-12 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Estimation of Stochastic Processes is intended for researchers in the field of econometrics, financial mathematics, statistics or signal processing. This book gives a deep understanding of spectral theory and estimation techniques for stochastic processes with stationary increments. It focuses on the estimation of functionals of unobserved values for stochastic processes with stationary increments, including ARIMA processes, seasonal time series and a class of cointegrated sequences. Furthermore, this book presents solutions to extrapolation (forecast), interpolation (missed values estimation) and filtering (smoothing) problems based on observations with and without noise, in discrete and continuous time domains. Extending the classical approach applied when the spectral densities of the processes are known, the minimax method of estimation is developed for a case where the spectral information is incomplete and the relations that determine the least favorable spectral densities for the optimal estimations are found.

Book Non Stationary Stochastic Processes Estimation

Download or read book Non Stationary Stochastic Processes Estimation written by Maksym Luz and published by Walter de Gruyter GmbH & Co KG. This book was released on 2024-05-20 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: The problem of forecasting future values of economic and physical processes, the problem of restoring lost information, cleaning signals or other data observations from noise, is magnified in an information-laden word. Methods of stochastic processes estimation depend on two main factors. The first factor is construction of a model of the process being investigated. The second factor is the available information about the structure of the process under consideration. In this book, we propose results of the investigation of the problem of mean square optimal estimation (extrapolation, interpolation, and filtering) of linear functionals depending on unobserved values of stochastic sequences and processes with periodically stationary and long memory multiplicative seasonal increments. Formulas for calculating the mean square errors and the spectral characteristics of the optimal estimates of the functionals are derived in the case of spectral certainty, where spectral structure of the considered sequences and processes are exactly known. In the case where spectral densities of the sequences and processes are not known exactly while some sets of admissible spectral densities are given, we apply the minimax-robust method of estimation.

Book Correlation Theory of Stationary and Related Random Functions

Download or read book Correlation Theory of Stationary and Related Random Functions written by A.M. Yaglom and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: Correlation Theory of Stationary and Related Random Functions is an elementary introduction to the most important part of the theory dealing only with the first and second moments of these functions. This theory is a significant part of modern probability theory and offers both intrinsic mathematical interest and many concrete and practical applications. Stationary random functions arise in connection with stationary time series which are so important in many areas of engineering and other applications. This book presents the theory in such a way that it can be understood by readers without specialized mathematical backgrounds, requiring only the knowledge of elementary calculus. The first volume in this two-volume exposition contains the main theory; the supplementary notes and references of the second volume consist of detailed discussions of more specialized questions, some more additional material (which assumes a more thorough mathematical background than the rest of the book) and numerous references to the extensive literature.

Book Time Series Analysis  Methods and Applications

Download or read book Time Series Analysis Methods and Applications written by and published by Elsevier. This book was released on 2012-05-18 with total page 777 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments.The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. - Comprehensively presents the various aspects of statistical methodology - Discusses a wide variety of diverse applications and recent developments - Contributors are internationally renowened experts in their respective areas

Book Time Series Analysis  Methods and Applications

Download or read book Time Series Analysis Methods and Applications written by Tata Subba Rao and published by Elsevier. This book was released on 2012-06-26 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Handbook of Statistics' is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with volume 30 dealing with time series.

Book Modern Multidimensional Scaling

Download or read book Modern Multidimensional Scaling written by Ingwer Borg and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multidimensional scaling (MDS) is a technique for the analysis of similarity or dissimilarity data on a set of objects. Such data may be intercorrelations of test items, ratings of similarity on political candidates, or trade indices for a set of countries. MDS attempts to model such data as distances among points in a geometric space. The main reason for doing this is that one wants a graphical display of the structure of the data, one that is much easier to understand than an array of numbers and, moreover, one that displays the essential information in the data, smoothing out noise. There are numerous varieties of MDS. Some facets for distinguishing among them are the particular type of geometry into which one wants to map the data, the mapping function, the algorithms used to find an optimal data representation, the treatment of statistical error in the models, or the possibility to represent not just one but several similarity matrices at the same time. Other facets relate to the different purposes for which MDS has been used, to various ways of looking at or "interpreting" an MDS representation, or to differences in the data required for the particular models. In this book, we give a fairly comprehensive presentation of MDS. For the reader with applied interests only, the first six chapters of Part I should be sufficient. They explain the basic notions of ordinary MDS, with an emphasis on how MDS can be helpful in answering substantive questions.

Book Multidimensional Second Order Stochastic Processes

Download or read book Multidimensional Second Order Stochastic Processes written by Y–ichir“ Kakihara and published by World Scientific. This book was released on 1997 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: A research-expository treatment of infinite-dimensional nonstationary stochastic processes (or time series) on a locally compact abelian group is provided with this book. Stochastic measures and scalar or operator bimeasures are fully discussed.

Book Multidimensional Second Order Stochastic Processes

Download or read book Multidimensional Second Order Stochastic Processes written by Yuichiro Kakihara and published by World Scientific. This book was released on 1997-02-27 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a research-expository treatment of infinite-dimensional nonstationary stochastic processes or time series. Stochastic measures and scalar or operator bimeasures are fully discussed to develop integral representations of various classes of nonstationary processes such as harmonizable, V-bounded, Cramér and Karhunen classes and also the stationary class. Emphasis is on the use of functional, harmonic analysis as well as probability theory. Applications are made from the probabilistic and statistical points of view to prediction problems, Kalman filter, sampling theorems and strong laws of large numbers. Readers may find that the covariance kernel analysis is emphasized and it reveals another aspect of stochastic processes. This book is intended not only for probabilists and statisticians, but also for communication engineers.

Book Long Range Dependence and Self Similarity

Download or read book Long Range Dependence and Self Similarity written by Vladas Pipiras and published by Cambridge University Press. This book was released on 2017-04-18 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern and rigorous introduction to long-range dependence and self-similarity, complemented by numerous more specialized up-to-date topics in this research area.

Book Introduction to Time Series and Forecasting

Download or read book Introduction to Time Series and Forecasting written by Peter J. Brockwell and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Some of the key mathematical results are stated without proof in order to make the underlying theory acccessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introducitons are also given to cointegration and to non-linear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis.

Book Body Sensor Networking  Design and Algorithms

Download or read book Body Sensor Networking Design and Algorithms written by Saeid Sanei and published by John Wiley & Sons. This book was released on 2020-07-13 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete guide to the state of the art theoretical and manufacturing developments of body sensor network, design, and algorithms In Body Sensor Networking, Design, and Algorithms, professionals in the field of Biomedical Engineering and e-health get an in-depth look at advancements, changes, and developments. When it comes to advances in the industry, the text looks at cooperative networks, noninvasive and implantable sensor microelectronics, wireless sensor networks, platforms, and optimization—to name a few. Each chapter provides essential information needed to understand the current landscape of technology and mechanical developments. It covers subjects including Physiological Sensors, Sleep Stage Classification, Contactless Monitoring, and much more. Among the many topics covered, the text also includes additions such as: Over 120 figures, charts, and tables to assist with the understanding of complex topics Design examples and detailed experimental works A companion website featuring MATLAB and selected data sets Additionally, readers will learn about wearable and implantable devices, invasive and noninvasive monitoring, biocompatibility, and the tools and platforms for long-term, low-power deployment of wireless communications. It’s an essential resource for understanding the applications and practical implementation of BSN when it comes to elderly care, how to manage patients with chronic illnesses and diseases, and use cases for rehabilitation.