EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Multi terminal VSC based HVDC Systems for Offshore Wind Energy Systems Integration

Download or read book Multi terminal VSC based HVDC Systems for Offshore Wind Energy Systems Integration written by AlMutasim AlSammari and published by . This book was released on 2014 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: The installation of wind energy has rapidly increased in the last decade, especially in countries in Europe and East Asia. Offshore wind energy is expected to be one of the major power generation sources in the near future. However, the integrating of offshore wind plants into onshore ac grids remains a challenge in both technical and economic terms. Offshore wind plants can be connected to ac grids using ac or dc transmission systems. HVDC transmission is favored over HVAC transmission as the transmission distance increases. Recently, with the improvement in the field of semiconductor, it became possible to build a VSC-based HVDC system providing many benefits including the ability to independently control active and reactive power transfer. VSC-based Multiterminal HVDC (MTDC) transmission systems allows the interconnection of multiple offshore wind farms with multiple onshore ac grids. The challenges of building MTDC systems has been a hot topic in the past years and it appears this will continue into the future. Different control schemes based on droop characteristics have been presented as a means to regulate the dc voltage and control the power flow in MTDC transmission systems. In this thesis, the control and steady state operation of VSC-based MTDC systems is studied. A generalized control scheme based on droop characteristics is presented. The control methodology is based on the design of the droop constants to control the grid side VSCs for three different operational modes taking into consideration the varying nature of wind power. The three operational modes differ in how the generated wind power is distributed between the ac grids in the MTDC system. The difficulties and challenges of adding tap stations on HVDC lines in MTDC systems is also discussed in the thesis. A new control scheme approach for adding multiple taps on HVDC lines in MTDC systems is presented. A switching VSC models of the MTDC systems discussed throughout the thesis are built in Matlab/Simulink software. The models are simulated for different case scenarios to verify the control and normal operation of the systems.

Book Multi terminal VSC HVDC Based Offshore Wind farms Integration System Operation and Control

Download or read book Multi terminal VSC HVDC Based Offshore Wind farms Integration System Operation and Control written by Mohamed A. Abdelwahed and published by . This book was released on 2017 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: Worldwide, many countries direct billions of dollars into the development of renewable energy sources; especially wind generation, in an effort to relieve global warming effects and other environmental concerns. As a result of increasing numbers of remotely-located large power offshore wind farms, the AC grid faces many technical challenges in integrating such plants; such as large submarine power transmission for extended distances, power sharing and transfer, as well as remotely located induction generation reactive power support. Offshore multi-terminal VSC based HVDC (MT VSC-HVDC) transmission systems represent a possible means of dealing with those challenges. This is due to their higher capacity, flexibility and controllability than offshore AC transmission. In addition, these offshore grids provide grid integration to remote offshore wind farms leading providing additional interconnection capacity to improve the trade of electricity between different AC grids. This work presents a new centralized supervisory control strategy for controlling the power sharing and voltage regulation of MT VSC-HVDC integrating offshore wind farms. The main purpose of the proposed strategy is selecting the optimal parameters of the HVDC system VSCs' local controller. These optimal parameters are selected in order to achieve optimal system transient response and desired steady state operation. In this work, an adaptive droop-based power-sharing control strategy is proposed. The primary objective is to control the sharing of the active power transmitted by a MT VSC-HVDC network among a number of onshore AC grids or offshore loads based on the desired percentage shares. The shared power is generated by remote generation plants (e.g., offshore wind farms) or is provided as surplus of AC grids. The desired percentage shares of active power are optimized by the system operator to fulfill the active power requirements of the connected grids with respect to meeting goals such as supporting energy adequacy, increasing renewable energy penetration, and minimizing losses. The control strategy is based on two hierarchal levels: voltage-droop control as the primary controller and an optimization based secondary (supervisory) controller for selecting the optimal droop reference voltages. Based on the DC voltage transient and steady state dynamics, a methodology for choosing the droop gains for droop controlled converters has been developed. In addition, a new tuning methodology is proposed for selecting the optimum VSCs local controller gains to enhance the transient performance and the small-signal stability of the system to mitigate the change of the operating conditions, taking into consideration the overall dynamics of the MT HVDC system. The VSCs' local control loops gains are selected to maximize the system bandwidth and improve the system damping. As a part of the proposed methodology, the derivation of the aggregated linearized state-space model of a MT VSC-HVDC based offshore transmission system is provided. Based on the derived model, a small signal stability analysis was performed to show the interaction of the modes and define the dominant eigenvalues of the system. Furthermore, a communication-free DC voltage control strategy is presented for mitigating the effects of the power imbalance caused by permanent or temporary power-receiving converter outages. The proposed control strategy is targeted at fast power reduction of the wind power generation from the wind farms (WFs) in order to eliminate power imbalances in the HVDC network. This process is performed by decentralized control rules in the local controllers of the WF voltage source converter (VSC) and its wind turbines. The proposed strategy was designed to work with WFs based on both doubly fed induction generators (DFIGs) and permanent magnet synchronous generators (PMSGs). The proposed control strategies were validated on the B4 CIGRE MT VSC-HVDC test system and different case scenarios were applied to show its feasibility and robustness. The validation process was performed using Matlab software programming and Matlab/Simulink based time domain detailed model.

Book HVDC Grids

Download or read book HVDC Grids written by Dirk Van Hertem and published by John Wiley & Sons. This book was released on 2016-02-29 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses HVDC grids based on multi-terminal voltage-source converters (VSC), which is suitable for the connection of offshore wind farms and a possible solution for a continent wide overlay grid. HVDC Grids: For Offshore and Supergrid of the Future begins by introducing and analyzing the motivations and energy policy drives for developing offshore grids and the European Supergrid. HVDC transmission technology and offshore equipment are described in the second part of the book. The third part of the book discusses how HVDC grids can be developed and integrated in the existing power system. The fourth part of the book focuses on HVDC grid integration, in studies, for different time domains of electric power systems. The book concludes by discussing developments of advanced control methods and control devices for enabling DC grids. Presents the technology of the future offshore and HVDC grid Explains how offshore and HVDC grids can be integrated in the existing power system Provides the required models to analyse the different time domains of power system studies: from steady-state to electromagnetic transients This book is intended for power system engineers and academics with an interest in HVDC or power systems, and policy makers. The book also provides a solid background for researchers working with VSC-HVDC technologies, power electronic devices, offshore wind farm integration, and DC grid protection.

Book Control and Simulation of Multi terminal VSC HVDC Grids for Offshore Wind Integration

Download or read book Control and Simulation of Multi terminal VSC HVDC Grids for Offshore Wind Integration written by Jordi Romani Vidal and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Nowadays, High Voltage Direct Current (HVDC) systems based on Voltage Source Converters (VSC) are being installed for integrating the energy of individual offshore wind power plants to the main land AC grid. Moreover, as the number of offshore wind power plants is increasing, the interconnection of the different links in a multi-terminal grid, to increase the system exibility, becomes interesting. In this work, the different elements of a multi-terminal VSC-HVDC grid are modelled, VSC converters controllers are designed and the complete system is simulated employing Matlab Simulink to analyse the operation in different scenarios.

Book Design and Implementation of Multi Terminal VSC HVDC Transmission Systems for Offshore Wind Power Plants

Download or read book Design and Implementation of Multi Terminal VSC HVDC Transmission Systems for Offshore Wind Power Plants written by Gnanaprakash Vijayan and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper discusses a multi-terminal VSC HVDC system proposed for integration of deep sea wind farms and offshore thermal and nuclear platforms in to the grid onshore. An equivalent circuit of the VSC in synchronous d-q reference frame has been established and decoupled control of active and reactive power was developed. A three terminal VSC-HVDC was modeled and simulated in MATLAB/SIMULINK software. Voltage margin method has been used for reliable operation of the HVDC system without the need of communication. Simulation results show that the proposed multi-terminal VSC-HVDC was able to maintain constant DC voltage operation during load switching, step changes in power demand and was able to secure power to passive loads during loss of a DC voltage regulating VSC-HVDC terminal without the use of communication between terminals.

Book Offshore Wind Energy Generation

Download or read book Offshore Wind Energy Generation written by Olimpo Anaya-Lara and published by John Wiley & Sons. This book was released on 2014-06-03 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: The offshore wind sector’s trend towards larger turbines, bigger wind farm projects and greater distance to shore has a critical impact on grid connection requirements for offshore wind power plants. This important reference sets out the fundamentals and latest innovations in electrical systems and control strategies deployed in offshore electricity grids for wind power integration. Includes: All current and emerging technologies for offshore wind integration and trends in energy storage systems, fault limiters, superconducting cables and gas-insulated transformers Protection of offshore wind farms illustrating numerous system integration and protection challenges through case studies Modelling of doubly-fed induction generators (DFIG) and full-converter wind turbines structures together with an explanation of the smart grid concept in the context of wind farms Comprehensive material on power electronic equipment employed in wind turbines with emphasis on enabling technologies (HVDC, STATCOM) to facilitate the connection and compensation of large-scale onshore and offshore wind farms Worked examples and case studies to help understand the dynamic interaction between HVDC links and offshore wind generation Concise description of the voltage source converter topologies, control and operation for offshore wind farm applications Companion website containing simulation models of the cases discussed throughout Equipping electrical engineers for the engineering challenges in utility-scale offshore wind farms, this is an essential resource for power system and connection code designers and pratitioners dealing with integation of wind generation and the modelling and control of wind turbines. It will also provide high-level support to academic researchers and advanced students in power and renewable energy as well as technical and research staff in transmission and distribution system operators and in wind turbine and electrical equipment manufacturers.

Book Global Energy Interconnection

Download or read book Global Energy Interconnection written by Zhenya Liu and published by Academic Press. This book was released on 2015-08-28 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Global energy network is an important platform to guarantee effective exploitation of global clean energy and ensure reliable energy supply for everybody. Global Energy Interconnection analyzes the current situation and challenges of global energy development, provides the strategic thinking, overall objective, basic pattern, construction method and development mode for the development of global energy network. Based on the prediction of global energy and electricity supply and demand in the future, with the development of UHV AC/DC and smart grid technologies, this book offers new solutions to drive the safe, clean, highly efficient and sustainable development of global energy. The concept and development ideas concerning global energy interconnection in this book are based on the author’s thinking of strategic issues about China’s and the world’s energy and electricity development for many years, especially combined with successful practices of China’s UHV development. This book is particularly suitable for researchers and graduated students engaged in energy sector, as well as energy economics researchers, economists, consultants, and government energy policy makers in relevant fields. Based on the author's many years' experience in developing Smart Grid solutions within national and international projects. Combines both solid background information and cutting-edge technology progress, coupled with a useful and impressive list of references. The key energy problems which are challenging us nowadays are well stated and explained in this book, which facilitates a better understanding of the development of global energy interconnection with UHV AC/DC and smart grid technologies.

Book Integrating Wind Energy to Weak Power Grids using High Voltage Direct Current Technology

Download or read book Integrating Wind Energy to Weak Power Grids using High Voltage Direct Current Technology written by Nilanjan Ray Chaudhuri and published by Springer. This book was released on 2019-01-02 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first of its kind to provide a comprehensive framework for connecting wind farms to weak power grids using High Voltage DC technology. Most onshore wind energy potential is located in areas that are hardly inhabited and the majority of wind energy that is being harnessed by European countries is currently offshore, both sourced from locations that lack the presence of a strong power grid. This book focuses on the many challenges the wind farm industry faces integrating both onshore and offshore wind to ‘weak’ grids using HVDC technology. Through case studies and illustrative examples the author presents a framework for theoretical and mathematical analysis of HVDC technology, its application and successful integration of onshore and offshore wind farms. Presents a unified approach for integrating onshore and offshore wind energy to existing AC systems through MTDC grids; Includes an extensive treatment of onshore wind farms connected to LCC HVDC systems; Provides a comprehensive analysis of offshore wind farms connected to VSC HVDC systems.

Book Power Flow Modelling of HVDC Transmission Systems

Download or read book Power Flow Modelling of HVDC Transmission Systems written by Shagufta Khan and published by CRC Press. This book was released on 2022-12-23 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discusses steady state (i.e. power flow) solution of integrated AC/DC system for operating any multi-terminal HVDC grid within an existing AC grid Presents a detailed theoretical analysis of the system equilibrium under the different types of converter control HVDC power-flow models developed have been validated by implementation in IEEE 300-bus test network integrated with different HVDC grids DC grid power-flow controllers like the IDCPFC has been introduced and subsequently modeled into the powerflow algorithm Both unified and sequential powerflow models are covered

Book Design  Control  and Application of Modular Multilevel Converters for HVDC Transmission Systems

Download or read book Design Control and Application of Modular Multilevel Converters for HVDC Transmission Systems written by Kamran Sharifabadi and published by John Wiley & Sons. This book was released on 2016-08-22 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission. Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids. Key features: Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland. Comprehensive explanation of MMC application in HVDC and MTDC transmission technology. Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore. Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals. A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website. This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.

Book Planning and Control of Expandable Multi Terminal VSC HVDC Transmission Systems

Download or read book Planning and Control of Expandable Multi Terminal VSC HVDC Transmission Systems written by Roni Irnawan and published by Springer Nature. This book was released on 2019-09-03 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses novel methods for planning and coordinating converters when an existing point-to-point (PtP) HVDC link is expanded into a multi-terminal HVDC (MTDC) system. It demonstrates that expanding an existing PtP HVDC link is the best way to build an MTDC system, and is especially a better option than the build-from-scratch approach in cases where several voltage-sourced converter (VSC) HVDC links are already in operation. The book reports in detail on the approaches used to estimate the new steady-state operation limits of the expanded system and examines the factors influencing them, revealing new operation limits in the process. Further, the book explains how to coordinate the converters to stay within the limits after there has been a disturbance in the system. In closing, it describes the current DC grid control concept, including how to implement it in an MTDC system, and introduces a new DC grid control layer, the primary control interface (IFC).

Book Hvdc Transmission  1  Vsc Hvdc Based Mmc Topology In Power Systems

Download or read book Hvdc Transmission 1 Vsc Hvdc Based Mmc Topology In Power Systems written by Chan-ki Kim and published by World Scientific. This book was released on 2021-04-09 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: HVDC grids and super grids have sparked so much interest these days that researchers and engineers across the globe are talking about them, studying them, supporting them, or questioning them. This book provides valuable information for researchers, industry, and policy makers. It explains why HVDC is favorable over AC technologies for power transmission; what the key technologies and challenges are for developing an HVDC grid; how an HVDC grid will be designed and operated; and how future HVDC grids will evolve. The book also devotes significant attention to nontechnical aspects such as the influence of energy policy and regulatory frameworks.This book is a result of collaboration between industry and academia. It provides theoretical insights into the design and control of MMC technology and investigates practical aspects of the project planning, design, manufacture, implementation, and commissioning of MMC-HVDC and multi-terminal HVDC transmission technologies; filling the knowledge gap between the technology specialists and VSC-HVDC project developers and key personnel involved in those projects.

Book Integration of Large Scale Wind Energy with Electrical Power Systems in China

Download or read book Integration of Large Scale Wind Energy with Electrical Power Systems in China written by Zongxiang Lu and published by John Wiley & Sons. This book was released on 2018-04-04 with total page 976 pages. Available in PDF, EPUB and Kindle. Book excerpt: An in-depth examination of large scale wind projects and electricity production in China Presents the challenges of electrical power system planning, design, operation and control carried out by large scale wind power, from the Chinese perspective Focuses on the integration issue of large scale wind power to the bulk power system, probing the interaction between wind power and bulk power systems Wind power development is a burgeoning area of study in developing countries, with much interest in offshore wind farms and several big projects under development English translation of the Chinese language original which won the "Fourth China Outstanding Publication Award nomination" in March 2013

Book Power Flow Modelling of HVDC Transmission Systems

Download or read book Power Flow Modelling of HVDC Transmission Systems written by Shagufta Khan and published by CRC Press. This book was released on 2022-12-23 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals exclusively with the power-flow modelling of HVDC transmission systems. Different types of HVDC transmission systems, their configurations/connections and control techniques are covered in detail. Power-Flow modelling of both LCC- and VSC-based HVDC systems is covered in this book. Both the unified and the sequential power-flow methods are addressed. DC grid power-flow controllers and renewable energy resources like offshore wind farms (OWFs) are also incorporated into the power-flow models of VSC-HVDC systems. The effects of the different power-flow methods and HVDC control strategies on the power-flow convergence are detailed along with their implementation. Features: Introduces the power-flow concept and develops the power-flow models of integrated AC/DC systems. Different types of converter control are modelled into the integrated AC/DC power-flow models developed. Both unified and the sequential power-flow methods are addressed. DC grid power-flow controllers like the IDCPFC and renewable energy resources like offshore wind farms (OWFs) are introduced and subsequently modelled into the power-flow algorithms. Integrated AC/DC power-flow models developed are validated by implementation in the IEEE 300-bus and European 1354-bus test networks incorporating different HVDC grids. This book aims at researchers and graduate students in Electrical Engineering, Power Systems, and HVDC Transmission.

Book Wind Energy Conversion Systems

Download or read book Wind Energy Conversion Systems written by S.M. Muyeen and published by Springer Science & Business Media. This book was released on 2012-01-04 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This exploration of the technical progress of wind energy conversion systems also examines potential future trends and includes recently developed systems such as those for multi-converter operation of variable-speed wind generators and lightning protection.

Book Restructured Electric Power Systems

Download or read book Restructured Electric Power Systems written by Xiao-Ping Zhang and published by John Wiley & Sons. This book was released on 2010-10-15 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest practical applications of electricity market equilibrium models in analyzing electricity markets Electricity market deregulation is driving the power energy production from a monopolistic structure into a competitive market environment. The development of electricity markets has necessitated the need to analyze market behavior and power. Restructured Electric Power Systems reviews the latest developments in electricity market equilibrium models and discusses the application of such models in the practical analysis and assessment of electricity markets. Drawing upon the extensive involvement in the research and industrial development of the leading experts in the subject area, the book starts by explaining the current developments of electrical power systems towards smart grids and then relates the operation and control technologies to the aspects in electricity markets. It explores: The problems of electricity market behavior and market power Mathematical programs with equilibrium constraints (MPEC) and equilibrium problems with equilibrium constraints (EPEC) Tools and techniques for solving the electricity market equilibrium problems Various electricity market equilibrium models State-of-the-art techniques for computing the electricity market equilibrium problems The application of electricity market equilibrium models in assessing the economic benefits of transmission expansions for market environments, forward and spot markets, short-term power system security, and analysis of reactive power impact Also featured are computational resources to allow readers to develop algorithms on their own, as well as future research directions in modeling and computational techniques in electricity market analysis. Restructured Electric Power Systems is an invaluable reference for electrical engineers and power system economists from power utilities and for professors, postgraduate students, and undergraduate students in electrical power engineering, as well as those responsible for the design, engineering, research, and development of competitive electricity markets and electricity market policy.

Book Multi terminal HVDC grids control and operation

Download or read book Multi terminal HVDC grids control and operation written by Kumars Rouzbehi and published by . This book was released on 2016 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, there have been considerable efforts in the design and development of technologies and techniques for more efficient harvesting of renewable energy resources to meet the ever increasing electric power demand and to limit the use of fossil fuels. In this regard, offshore wind farms have emerged as a promising solution, particularly in the North Sea, due to the vast potential of offshore wind energy. Large-scale offshore wind farms in the North Sea pose grid integration challenges such as the need for long distance submarine power transmission and managing the harvested wind energy. These challenges can be properly addressed by developing of Multi terminal dc (MTDC) systems. Future MTDC grids are expected to be built overlaying the present ac grids as well as harvesting offshore wind to build so-called "Supergrid" The work presented in this dissertation is oriented to facilitate the control and operation of future MTDC grids. The proposed approaches rely on hierarchical control architecture, inspired by the well-established automatic generation control (AGC) strategy have applied to ac grids. In the inspired hierarchical control architecture, the primary control of the MTDC grid is totally decentralized and implemented using the proposed Generalized Voltage Droop (GVD) control strategy. GVD proposes an alternative to the conventional voltage droop characteristics of voltage-regulating VSC stations, providing more generic and flexible control solution that takes into account the states of the converter stations and the ac+dc grid. The GVD control strategy can perform three different control modes, including conventional voltage droop control, fixed active power control, and fixed dc voltage control, by adjusting the GVD characteristics of the voltage-regulating converters. Such adjustment is driven by the secondary layer of the proposed hierarchical control structure. The proposed strategy improves the control and power-sharing capabilities of the conventional voltage drop, and enhances its maneuverability. This dissertation also addresses the tuning of the controllers of VSC-HVDC stations, by providing a methodology for optimized tuning of the parameters that influence their behavior. Since the VSC stations are nonlinear plants in nature, the classical approaches for tuning of the control system, which are usually based on the approximate linear model of the plants, do not lead to optimal results. Refereeing to the successful application of particle swarm optimization (PSO) algorithm in the tuning of ac grids parameters, this algorithm again is used to find optimal control parameters of VSC-HVDC stations in MTDC grids. As the last part of the proposed hierarchical control structure, the secondary control is centralized and it regulates the operating point of the grid so that optimal power flow (OPF) is achieved. In the proposed approach, an OPF algorithm is executed at the secondary control level of the MTDC grid to find the optimal reference values for the dc voltages and active power of the voltage-regulating converters. Then, at the primary control level, the GVD characteristics of the voltage-regulating converters are tuned based upon the OPF results. Via this control structure, the optimally-tuned GVD controllers lead to the optimal operation of the MTDC grid. In case of variation in load or generation of the grid, a new stable operating point is achieved based on the GVD characteristics of converter stations. Then by executing a new OPF, the GVD characteristics are re-tuned for optimal operation of the MTDC grid.