EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines

Download or read book Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines written by Jihad Badra and published by Elsevier. This book was released on 2022-01-05 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines summarizes recent developments in Artificial Intelligence (AI)/Machine Learning (ML) and data driven optimization and calibration techniques for internal combustion engines. The book covers AI/ML and data driven methods to optimize fuel formulations and engine combustion systems, predict cycle to cycle variations, and optimize after-treatment systems and experimental engine calibration. It contains all the details of the latest optimization techniques along with their application to ICE, making it ideal for automotive engineers, mechanical engineers, OEMs and R&D centers involved in engine design. - Provides AI/ML and data driven optimization techniques in combination with Computational Fluid Dynamics (CFD) to optimize engine combustion systems - Features a comprehensive overview of how AI/ML techniques are used in conjunction with simulations and experiments - Discusses data driven optimization techniques for fuel formulations and vehicle control calibration

Book Computational Intelligence in Expensive Optimization Problems

Download or read book Computational Intelligence in Expensive Optimization Problems written by Yoel Tenne and published by Springer Science & Business Media. This book was released on 2010-03-10 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: In modern science and engineering, laboratory experiments are replaced by high fidelity and computationally expensive simulations. Using such simulations reduces costs and shortens development times but introduces new challenges to design optimization process. Examples of such challenges include limited computational resource for simulation runs, complicated response surface of the simulation inputs-outputs, and etc. Under such difficulties, classical optimization and analysis methods may perform poorly. This motivates the application of computational intelligence methods such as evolutionary algorithms, neural networks and fuzzy logic, which often perform well in such settings. This is the first book to introduce the emerging field of computational intelligence in expensive optimization problems. Topics covered include: dedicated implementations of evolutionary algorithms, neural networks and fuzzy logic. reduction of expensive evaluations (modelling, variable-fidelity, fitness inheritance), frameworks for optimization (model management, complexity control, model selection), parallelization of algorithms (implementation issues on clusters, grids, parallel machines), incorporation of expert systems and human-system interface, single and multiobjective algorithms, data mining and statistical analysis, analysis of real-world cases (such as multidisciplinary design optimization). The edited book provides both theoretical treatments and real-world insights gained by experience, all contributed by leading researchers in the respective fields. As such, it is a comprehensive reference for researchers, practitioners, and advanced-level students interested in both the theory and practice of using computational intelligence for expensive optimization problems.

Book Computational Optimization of Internal Combustion Engines

Download or read book Computational Optimization of Internal Combustion Engines written by Yu Shi and published by Springer Science & Business Media. This book was released on 2011-06-22 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Optimization of Internal Combustion Engines presents the state of the art of computational models and optimization methods for internal combustion engine development using multi-dimensional computational fluid dynamics (CFD) tools and genetic algorithms. Strategies to reduce computational cost and mesh dependency are discussed, as well as regression analysis methods. Several case studies are presented in a section devoted to applications, including assessments of: spark-ignition engines, dual-fuel engines, heavy duty and light duty diesel engines. Through regression analysis, optimization results are used to explain complex interactions between engine design parameters, such as nozzle design, injection timing, swirl, exhaust gas recirculation, bore size, and piston bowl shape. Computational Optimization of Internal Combustion Engines demonstrates that the current multi-dimensional CFD tools are mature enough for practical development of internal combustion engines. It is written for researchers and designers in mechanical engineering and the automotive industry.

Book Combustion Optimization in the Low temperature Combustion Regime

Download or read book Combustion Optimization in the Low temperature Combustion Regime written by Hanho Yun and published by . This book was released on 2004 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Simulation and Optimization of Internal Combustion Engines

Download or read book Simulation and Optimization of Internal Combustion Engines written by Zhiyu Han and published by SAE International. This book was released on 2021-12-28 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulation and Optimization of Internal Combustion Engines provides the fundamentals and up-to-date progress in multidimensional simulation and optimization of internal combustion engines. While it is impossible to include all the models in a single book, this book intends to introduce the pioneer and/or the often-used models and the physics behind them providing readers with ready-to-use knowledge. Key issues, useful modeling methodology and techniques, as well as instructive results, are discussed through examples. Readers will understand the fundamentals of these examples and be inspired to explore new ideas and means for better solutions in their studies and work. Topics include combustion basis of IC engines, mathematical descriptions of reactive flow with sprays, engine in-cylinder turbulence, fuel sprays, combustions and pollutant emissions, optimization of direct-injection gasoline engines, and optimization of diesel and alternative fuel engines.

Book SAE 2004 30 0038  An Experimental Validation of a Genetic Algorithm Coupled with a CFD Code for Combustion Chamber Design

Download or read book SAE 2004 30 0038 An Experimental Validation of a Genetic Algorithm Coupled with a CFD Code for Combustion Chamber Design written by C.Y. Choi and published by . This book was released on 1999 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: An extensive evaluation was conducted to determine the feasibility of coupling the Genetic Algorithm (GA) optimization methodology with a combustion CFD code for production use. This methodology was applied to a Caterpillar research diesel engine and the optimal design produced by the GA was tested. Results showed that the optimal design performed as predicted at a target high-load operating condition by reducing both NOx and soot at equivalent brake specific fuel consumption (BSFC) when compared to a baseline Mexican-hat bowl and conventional nozzle configuration. Furthermore, the CFD code correctly predicted the magnitude of change in performance between optimal and baseline designs in 5 out of 6 emissions metrics over 3 operating modes. The optimal design did not outperform the baseline at all modes tested; however, results have validated both the predictive capability of the code as well as the feasibility of using a GA to produce viable engine designs that meet performance targets. The results suggest that to produce a design that is truly optimal over the entire speed-load range of a diesel engine, multi-modal optimizations should be performed in the future.

Book Engineering Fluid Dynamics 2019 2020

Download or read book Engineering Fluid Dynamics 2019 2020 written by Bjørn H. Hjertager and published by MDPI. This book was released on 2021-02-25 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the successful submissions to a Special Issue of Energies entitled “Engineering Fluid Dynamics 2019–2020”. The topic of engineering fluid dynamics includes both experimental and computational studies. Of special interest were submissions from the fields of mechanical, chemical, marine, safety, and energy engineering. We welcomed original research articles and review articles. After one-and-a-half years, 59 papers were submitted and 31 were accepted for publication. The average processing time was about 41 days. The authors had the following geographical distribution: China (15); Korea (7); Japan (3); Norway (2); Sweden (2); Vietnam (2); Australia (1); Denmark (1); Germany (1); Mexico (1); Poland (1); Saudi Arabia (1); USA (1); Serbia (1). Papers covered a wide range of topics including analysis of free-surface waves, bridge girders, gear boxes, hills, radiation heat transfer, spillways, turbulent flames, pipe flow, open channels, jets, combustion chambers, welding, sprinkler, slug flow, turbines, thermoelectric power generation, airfoils, bed formation, fires in tunnels, shell-and-tube heat exchangers, and pumps.

Book Racing Toward Zero

Download or read book Racing Toward Zero written by Kelly Senecal and published by SAE International. This book was released on 2021-06-01 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Racing Toward Zero, the authors explore the issues inherent in developing sustainable transportation. They review the types of propulsion systems and vehicle options, discuss low-carbon fuels and alternative energy sources, and examine the role of regulation in curbing emissions. All technologies have an impact on the environment, from internal combustion engine vehicles to battery electric vehicles, fuel cell electric vehicles, and hybrids-there is no silver bullet. The battery electric vehicle may seem the obvious path to a sustainable, carbon-free transportation future, but it's not the only, nor necessarily the best, path forward. The vast majority of vehicles today use the internal combustion engine (ICE), and this is unlikely to change anytime soon. Improving the ICE and its fuels-entering a new ICE age-must be a main route on the road to zero emissions. How do we go green? The future requires a balanced approach to transportation. It's not a matter of choosing between combustion or electrification; it's combustion and electrification. As the authors say, "The future is eclectic." By harnessing the best qualities of both technologies, we will be in the best position to address our transportation future as quickly as possible. (ISBN:9781468601466 ISBN:9781468601473 ISBN:9781468602005 DOI:10.4271/9781468601473)

Book Operating Parameter Optimization in a 2 stroke Direct injection Engine with Multidimensional Modeling and a Genetic Algorithm Search Technique

Download or read book Operating Parameter Optimization in a 2 stroke Direct injection Engine with Multidimensional Modeling and a Genetic Algorithm Search Technique written by Mark N. Subramaniam and published by . This book was released on 2002 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book In cylinder Diesel Particulate and NOx Control 2007

Download or read book In cylinder Diesel Particulate and NOx Control 2007 written by and published by . This book was released on 2007 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modelling Diesel Combustion

Download or read book Modelling Diesel Combustion written by P. A. Lakshminarayanan and published by Springer Science & Business Media. This book was released on 2010-03-03 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.

Book Annual Index abstracts of SAE Technical Papers

Download or read book Annual Index abstracts of SAE Technical Papers written by and published by . This book was released on 2007 with total page 1218 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Assessment of Diesel Engine Size scaling Relationships

Download or read book Assessment of Diesel Engine Size scaling Relationships written by Laine Alison Stager and published by . This book was released on 2006 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Addressing the Challenges of Advanced Compression Ignition Strategies Using Optimization Techniques with Machine Learning

Download or read book Addressing the Challenges of Advanced Compression Ignition Strategies Using Optimization Techniques with Machine Learning written by Naga Krishna Chaitanya Kavuri and published by . This book was released on 2018 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced compression ignition strategies like reactivity controlled compression ignition (RCCI) and gasoline compression ignition (GCI) have received substantial interest over the past few years. This is due to their potential to achieve reduced emissions, and higher efficiency, relative to conventional diesel combustion. However, most of the benefits seen in past research from these strategies were demonstrated under mid-load conditions. For these strategies to be implemented practically, similar benefits must be demonstrated across the drive cycle. Two particularly challenging areas of operation are high-load-low-speed and low-load-high-speed. Very limited research has been done with advanced compression ignition strategies in these points of the engine operating map. The reason for this is, at these operating conditions, there exists a mismatch between engine and chemistry time scales. The time scale mismatch results in either increased pressure rise rates or high levels of incomplete combustion, both of which make it difficult to operate. The work presented in this dissertation attempts to fill in these research gaps by using a combination of computational fluid dynamics modeling and genetic algorithm optimization. Initially, targeting high-load-low-speed conditions, a computational optimization study was performed at 20 bar indicated mean effective pressure and 1300 rev/min. with RCCI and GCI combustion strategies. The study was performed on a low compression ratio (12:1) piston with a "bathtub" geometry, since it was found to be well suited for high-load operation in earlier studies. The optima from the two combustion strategies were compared in terms of combustion characteristics, combustion control, and sensitivity to operating parameter variations. The results showed that both the strategies have similar combustion characteristics, including a two-stage heat release. A near top dead center injection initiated the combustion and its injection timing could be used to control the combustion phasing for both the strategies. Both the strategies required elevated levels of exhaust gas recirculation (EGR) (~55%) at a near stoichiometric global equivalence ratio to control the peak pressure rise rate. This resulted in high sensitivity to variations in EGR. To address this issue, high-load strategies at reduced EGR levels were investigated. A constraint analysis was performed using the optimization data to identify the constraints preventing operation at lower EGR levels. Results showed that operation at lower EGR rates was constrained by NOx emissions. Relaxing the NOx constraint enabled lower EGR operation with significant efficiency improvement. Allowing NOx emissions to increase to acceptable levels for selective catalytic reduction after treatment yielded an optimum at a moderate (~45%) level of EGR and a globally lean equivalence ratio of 0.8. This optimum case had near zero soot emissions and a higher net fluid efficiency (which accounted for the pumping loop work and the diesel exhaust fluid mass required to reduce the NOx emissions) compared to the earlier high EGR optima. Furthermore, the optimum case with NOx aftertreatment was compared with the high EGR optima in terms of combustion control and stability to operating condition fluctuations. The optimum with NOx aftertreatment retained the excellent combustion control seen with the high EGR optima, while reducing the sensitivity to operating parameter variations. The improved stability was attributed to operation at a reduced global equivalence ratio (from 0.93 to 0.8), which decreased the sensitivity to fluctuations in EGR rate. After addressing the issues at the high-load-low-speed operating condition, a low-load-high-speed operating point of 2 bar and 1800 rev/min. was simulated on the same engine used for the high-load studies. The results showed poor thermal efficiency for the low-load point. The poor efficiency was found to be due to an elevated level of incomplete combustion, which was a result of the low compression ratio piston used for the study. This result suggested that an optimum compression ratio should be identified considering the performance at the low-load and high-load conditions simultaneously. In addition, past optimization studies performed at low-load conditions have shown that the optimum bowl and injector design are very different compared to the high-load conditions. Accordingly, an optimization study was performed, considering performance at low- and high-load simultaneously. The optimum from the study was a stepped bowl geometry, with a compression ratio of 13.1:1, which resulted in a gross indicated efficiency of ~46% at both the loads. The study showed that the optimum design obtained from prioritizing one load deteriorates the performance at the other load. The results highlight the importance of considering multiple modes of the drive cycle simultaneously, when optimizing the engine design for advanced combustion strategies. It was shown that multiple modes of the drive cycle should be considered in optimization studies for advanced combustion strategies; however, the optimization with just two operating points took three months to complete. To consider all the modes of a drive cycle in the optimization, the computational time must be reduced. To address this issue, machine learning through Gaussian process regression was coupled with a genetic algorithm optimization to speed up the optimization process. Including machine learning within the optimization process reduced the computational time of optimization by 62%. The optimization process was further improved by using the Gaussian process regression model to check for the sensitivity of the designs to operating parameter variations during the optimization. The approach was tested with existing optimization data and it was shown that adding the stability check resulted in a reliable and stable optimum solution.

Book Combustion Optimization Based on Computational Intelligence

Download or read book Combustion Optimization Based on Computational Intelligence written by Hao Zhou and published by Springer. This book was released on 2018-02-02 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest findings on the subject of combustion optimization based on computational intelligence. It covers a broad range of topics, including the modeling of coal combustion characteristics based on artificial neural networks and support vector machines. It also describes the optimization of combustion parameters using genetic algorithms or ant colony algorithms, an online coal optimization system, etc. Accordingly, the book offers a unique guide for researchers in the areas of combustion optimization, NOx emission control, energy and power engineering, and chemical engineering.

Book Automotive and engine technology

Download or read book Automotive and engine technology written by Michael Bargende and published by expert verlag. This book was released on 2003 with total page 814 pages. Available in PDF, EPUB and Kindle. Book excerpt: