EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book MRTD  Multi Resolution Time Domain  Method in Electromagnetics

Download or read book MRTD Multi Resolution Time Domain Method in Electromagnetics written by Nathan Bushyager and published by Springer Nature. This book was released on 2022-05-31 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a method that allows the use of multiresolution principles in a time domain electromagnetic modeling technique that is applicable to general structures. The multiresolution time-domain (MRTD) technique, as it is often called, is presented for general basis functions. Additional techniques that are presented here allow the modeling of complex structures using a subcell representation that permits the modeling discrete electromagnetic effects at individual equivalent grid points. This is accomplished by transforming the application of the effects at individual points in the grid into the wavelet domain. In this work, the MRTD technique is derived for a general wavelet basis using a relatively compact vector notation that both makes the technique easier to understand and illustrates the differences between MRTD basis functions. In addition, techniques such as the uniaxial perfectly matched layer (UPML) for arbitrary wavelet resolution and non-uniform gridding are presented. Using these techniques, any structure that can be simulated in Yee-FDTD can be modeled with in MRTD.

Book Mrtd   Multi Resolution Time Domain   Method In Electomagnetics

Download or read book Mrtd Multi Resolution Time Domain Method In Electomagnetics written by Nathan Adam Bushyager and published by . This book was released on 2005 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book presents a method that allows the use of multiresolution principles in a time domain electromagnetic modeling technique that is applicable to general structures. The multiresolution time-domain (MRTD) technique, as it is often called, is presented for general basis functions. Additional techniques that are presented here allow the modeling of complex structures using a subcell representation that permits the modeling discrete electromagnetic effects at individual equivalent grid points. This is accomplished by transforming the application of the effects at individual points in the grid into the wavelet domain. In this work, the MRTD technique is derived for a general wavelet basis using a relatively compact vector notation that both makes the technique easier to understand and illustrates the differences between MRTD basis functions. In addition, techniques such as the uniaxial perfectly matched layer (UPML) for arbitrary wavelet resolution and non-uniform gridding are presented. Using these techniques, any structure that can be simulated in Yee-FDTD can be modeled with in MRTD."--Publisher's website.

Book MRTD  Multi Resolution Time Domain  Method in Electromagnetics

Download or read book MRTD Multi Resolution Time Domain Method in Electromagnetics written by Nathan A. / Tentzeris Bushyager (Manos M.) and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multiresolution Time Domain Scheme for Electromagnetic Engineering

Download or read book Multiresolution Time Domain Scheme for Electromagnetic Engineering written by Yinchao Chen and published by Wiley-Interscience. This book was released on 2005-01-28 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapid development of computer techniques and information technologies in recent decades has fueled the need for efficient tools for electromagnetic modeling of millimeter-wave integrated circuits, high-speed and high-density VLSI circuits, including computer chips and wireless computer applications.

Book Scattering Analysis of Periodic Structures using Finite Difference Time Domain Method

Download or read book Scattering Analysis of Periodic Structures using Finite Difference Time Domain Method written by Khaled ElMahgoub and published by Springer Nature. This book was released on 2022-06-01 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Periodic structures are of great importance in electromagnetics due to their wide range of applications such as frequency selective surfaces (FSS), electromagnetic band gap (EBG) structures, periodic absorbers, meta-materials, and many others. The aim of this book is to develop efficient computational algorithms to analyze the scattering properties of various electromagnetic periodic structures using the finite-difference time-domain periodic boundary condition (FDTD/PBC) method. A new FDTD/PBC-based algorithm is introduced to analyze general skewed grid periodic structures while another algorithm is developed to analyze dispersive periodic structures. Moreover, the proposed algorithms are successfully integrated with the generalized scattering matrix (GSM) technique, identified as the hybrid FDTD-GSM algorithm, to efficiently analyze multilayer periodic structures. All the developed algorithms are easy to implement and are efficient in both computational time and memory usage. These algorithms are validated through several numerical test cases. The computational methods presented in this book will help scientists and engineers to investigate and design novel periodic structures and to explore other research frontiers in electromagnetics. Table of Contents: Introduction / FDTD Method and Periodic Boundary Conditions / Skewed Grid Periodic Structures / Dispersive Periodic Structures / Multilayered Periodic Structures / Conclusions

Book Modern EMC Analysis Techniques Volume I

Download or read book Modern EMC Analysis Techniques Volume I written by Nikolaos Kantartzis and published by Springer Nature. This book was released on 2022-05-31 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this two-volume book is the systematic and comprehensive description of the most competitive time-domain computational methods for the efficient modeling and accurate solution of contemporary real-world EMC problems. Intended to be self-contained, it performs a detailed presentation of all well-known algorithms, elucidating on their merits or weaknesses, and accompanies the theoretical content with a variety of applications. Outlining the present volume, the analysis covers the theory of the finite-difference time-domain, the transmission-line matrix/modeling, and the finite integration technique. Moreover, alternative schemes, such as the finite-element, the finitevolume, the multiresolution time-domain methods and many others, are presented, while particular attention is drawn to hybrid approaches. To this aim, the general aspects for the correct implementation of the previous algorithms are also exemplified. At the end of every section, an elaborate reference on the prominent pros and possible cons, always in the light of EMC modeling, assists the reader to retrieve the gist of each formulation and decide on his/her best possible selection according to the problem under investigation. Table of Contents: Fundamental Time-Domain Methodologies for EMC Analysis / Alternative Time-Domain Techniques in EMC Modeling / Principal Implementation Issues of Time-Domain EMC Simulation

Book Computational Photonics

    Book Details:
  • Author : Salah Obayya
  • Publisher : John Wiley & Sons
  • Release : 2011-06-20
  • ISBN : 1119957508
  • Pages : 268 pages

Download or read book Computational Photonics written by Salah Obayya and published by John Wiley & Sons. This book was released on 2011-06-20 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the state-of-the art in computational modelling techniques for photonic devices In this book, the author provides a comprehensive coverage of modern numerical modelling techniques for designing photonic devices for use in modern optical telecommunications systems. In addition the book presents the state-of-the-art in computational photonics techniques, covering methods such as full-vectorial finite-element beam propagation, bidirectional beam propagation, complex-envelope alternative direction implicit finite difference time domain, multiresolution time domain, and finite volume time domain. The book guides the reader through the concepts of modelling, analysing, designing and optimising the performance of a wide range of photonic devices by building their own numerical code using these methods. Key Features: Provides a thorough presentation of the state-of-the art in computational modelling techniques for photonics Contains broad coverage of both frequency- and time-domain techniques to suit a wide range of photonic devices Reviews existing commercial software packages for photonics Presents the advantages and disadvantages of the different modelling techniques as well as their suitability for various photonic devices Shows the reader how to model, analyse, design and optimise the performance of a wide range of photonic devices by building their own numerical code using these methods Accompanying website contains the numerical examples representing the numerical techniques in this book, as well as several design examples (http://www.wiley.com/go/obayya_computational) This book will serve as an invaluable reference for researchers, optical telecommunications engineers, engineers in the photonics industry. PhD and MSc students undertaking courses in the areas of photonics and optical telecommunications will also find this book of interest.

Book Analysis and Design of Substrate Integrated Waveguide Using Efficient 2D Hybrid Method

Download or read book Analysis and Design of Substrate Integrated Waveguide Using Efficient 2D Hybrid Method written by Xuan Hui Wu and published by Springer Nature. This book was released on 2022-06-01 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: Substrate integrated waveguide (SIW) is a new type of transmission line. It implements a waveguide on a piece of printed circuit board by emulating the side walls of the waveguide using two rows of metal posts. It inherits the merits both from the microstrip for compact size and easy integration, and from the waveguide for low radiation loss, and thus opens another door to design efficient microwave circuits and antennas at a low cost. This book presents a two-dimensional fullwave analysis method to investigate an SIW circuit composed of metal and dielectric posts. It combines the cylindrical eigenfunction expansion and the method of moments to avoid geometrical descritization of the posts. The method is presented step-by-step, with all the necessary formulations provided for a practitioner who wants to implement this method by himself. This book covers the SIW circuit printed on either homogeneous or inhomogeneous substrate, the microstrip-to-SIW transition and the speed-up technique for the simulation of symmetrical SIW circuits. Different types of SIW circuits are shown and simulated using the proposed method. In addition, several slot antennas and horn antennas fabricated using the SIW technology are also given. Table of Contents: Introduction / SIW Circuits Composed of Metallic Posts / SIW Circuits with Dielectric Posts / Even-Odd Mode Analysis of a Symmetrical Circuit / Microstrip to SIW Transition and Half Mode SIW / SIW Antennas

Book Double Grid Finite Difference Frequency Domain  DG FDFD  Method for Scattering from Chiral Objects

Download or read book Double Grid Finite Difference Frequency Domain DG FDFD Method for Scattering from Chiral Objects written by Erdogan Alkan and published by Springer Nature. This book was released on 2022-05-31 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the application of the overlapping grids approach to solve chiral material problems using the FDFD method. Due to the two grids being used in the technique, we will name this method as Double-Grid Finite Difference Frequency-Domain (DG-FDFD) method. As a result of this new approach the electric and magnetic field components are defined at every node in the computation space. Thus, there is no need to perform averaging during the calculations as in the aforementioned FDFD technique [16]. We formulate general 3D frequency-domain numerical methods based on double-grid (DG-FDFD) approach for general bianisotropic materials. The validity of the derived formulations for different scattering problems has been shown by comparing the obtained results to exact and other solutions obtained using different numerical methods. Table of Contents: Introduction / Chiral Media / Basics of the Finite-Difference Frequency-Domain (FDFD) Method / The Double-Grid Finite-Difference Frequency-Domain (DG-FDFD) Method for Bianisotropic Medium / Scattering FromThree Dimensional Chiral Structures / ImprovingTime and Memory Efficiencies of FDFD Methods / Conclusions / Appendix A: Notations / Appendix B: Near to Far FieldTransformation

Book Multiresolution Frequency Domain Technique for Electromagnetics

Download or read book Multiresolution Frequency Domain Technique for Electromagnetics written by Mesut Gökten and published by Morgan & Claypool Publishers. This book was released on 2012-10-01 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, a general frequency domain numerical method similar to the finite difference frequency domain (FDFD) technique is presented. The proposed method, called the multiresolution frequency domain (MRFD) technique, is based on orthogonal Battle-Lemarie and biorthogonal Cohen-Daubechies-Feauveau (CDF) wavelets. The objective of developing this new technique is to achieve a frequency domain scheme which exhibits improved computational efficiency figures compared to the traditional FDFD method: reduced memory and simulation time requirements while retaining numerical accuracy. The newly introduced MRFD scheme is successfully applied to the analysis of a number of electromagnetic problems, such as computation of resonance frequencies of one and three dimensional resonators, analysis of propagation characteristics of general guided wave structures, and electromagnetic scattering from two dimensional dielectric objects. The efficiency characteristics of MRFD techniques based on different wavelets are compared to each other and that of the FDFD method. Results indicate that the MRFD techniques provide substantial savings in terms of execution time and memory requirements, compared to the traditional FDFD method. Table of Contents: Introduction / Basics of the Finite Difference Method and Multiresolution Analysis / Formulation of the Multiresolution Frequency Domain Schemes / Application of MRFD Formulation to Closed Space Structures / Application of MRFD Formulation to Open Space Structures / A Multiresolution Frequency Domain Formulation for Inhomogeneous Media / Conclusion

Book 1997 International Symposium on Electromagnetic Compatibility

Download or read book 1997 International Symposium on Electromagnetic Compatibility written by Linchang Zhang and published by Institute of Electrical & Electronics Engineers(IEEE). This book was released on 1997 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is second of its series started 1992 in China. The 1997 symposium will provide a forum for researchers and engineers to present their latest research results on the R7D in the field of EMC.

Book The Finite Difference Time Domain Method for Electromagnetics

Download or read book The Finite Difference Time Domain Method for Electromagnetics written by Karl S. Kunz and published by CRC Press. This book was released on 1993-05-03 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Finite-Difference Time-domain (FDTD) method allows you to compute electromagnetic interaction for complex problem geometries with ease. The simplicity of the approach coupled with its far-reaching usefulness, create the powerful, popular method presented in The Finite Difference Time Domain Method for Electromagnetics. This volume offers timeless applications and formulations you can use to treat virtually any material type and geometry. The Finite Difference Time Domain Method for Electromagnetics explores the mathematical foundations of FDTD, including stability, outer radiation boundary conditions, and different coordinate systems. It covers derivations of FDTD for use with PEC, metal, lossy dielectrics, gyrotropic materials, and anisotropic materials. A number of applications are completely worked out with numerous figures to illustrate the results. It also includes a printed FORTRAN 77 version of the code that implements the technique in three dimensions for lossy dielectric materials. There are many methods for analyzing electromagnetic interactions for problem geometries. With The Finite Difference Time Domain Method for Electromagnetics, you will learn the simplest, most useful of these methods, from the basics through to the practical applications.

Book Introduction to the Finite Difference Time Domain  FDTD  Method for Electromagnetics

Download or read book Introduction to the Finite Difference Time Domain FDTD Method for Electromagnetics written by Stephen Gedney and published by Morgan & Claypool Publishers. This book was released on 2011-01-02 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to practical problems in engineering and science. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics guides the reader through the foundational theory of the FDTD method starting with the one-dimensional transmission-line problem and then progressing to the solution of Maxwell's equations in three dimensions. It also provides step by step guides to modeling physical sources, lumped-circuit components, absorbing boundary conditions, perfectly matched layer absorbers, and sub-cell structures. Post processing methods such as network parameter extraction and far-field transformations are also detailed. Efficient implementations of the FDTD method in a high level language are also provided. Table of Contents: Introduction / 1D FDTD Modeling of the Transmission Line Equations / Yee Algorithm for Maxwell's Equations / Source Excitations / Absorbing Boundary Conditions / The Perfectly Matched Layer (PML) Absorbing Medium / Subcell Modeling / Post Processing

Book Synthesis Series in Computational Electromagnetics Volume 1

Download or read book Synthesis Series in Computational Electromagnetics Volume 1 written by Andrew Peterson and published by Morgan & Claypool. This book was released on 2010-10-15 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first volume in a series of hardcovers combining Synthesis Lectures. This volume contains the following Synthesis books: Mapped Vector Basis Function for Electromagnetic Integral Equations; MRTD (Multi Resolution Time Domain) Method in Electromagnetics; and Higher Order FDTD Schemes for Waveguide and Antenna Structures.

Book Digest

    Book Details:
  • Author : IEEE Antennas and Propagation Society. International Symposium
  • Publisher :
  • Release : 2001
  • ISBN :
  • Pages : 908 pages

Download or read book Digest written by IEEE Antennas and Propagation Society. International Symposium and published by . This book was released on 2001 with total page 908 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Matched Interface and Boundary Enhanced Multiresolution Time domain Algorithm for Electromagnetic Simulations

Download or read book Matched Interface and Boundary Enhanced Multiresolution Time domain Algorithm for Electromagnetic Simulations written by Pengfei Yao and published by . This book was released on 2011 with total page 75 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present work introduces a new boundary closure treatment for the wavelet based multiresolution time-domain (MRTD) solution of Maxwell's equations [1]. Accommodating nontrivial boundary conditions, such as the Robin condition or time dependent condition, has been a challenging issue in the MRTD analysis of wave scattering, radiation, and propagation. A matched interface and boundary multiresolution time-domain (MIBMRTD) method is introduced to overcome this difficulty. Several numerical benchmark tests are carried out to valid the MIB-MRTD method. Dispersion and stability analysis for the MIB-MRTD method are conducted and compared with the high-order finite difference time-domain (FDTD) method . The proposed boundary treatment can also be applied to other high order approaches, such as the dispersion-relation-preserving (DRP) method. The MIB boundary scheme greatly enhances the feasibility for applying the MRTD methods to more complicated electromagnetic structures.

Book Metasurface Electromagnetics

Download or read book Metasurface Electromagnetics written by Martin Štumpf and published by IET. This book was released on 2022-04-14 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides original analytical and computational methodologies for solving the EM interaction with modern metasurface structures. New sophisticated modeling methods and closed-form solutions are explored, thereby providing enablers for future developments of thin-layer-based technologies.