EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Motivic Aspects of Hodge Theory

Download or read book Motivic Aspects of Hodge Theory written by Chris Peters and published by . This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are based on a series of lectures given at the Tata Institute of Fundamental Research, Mumbai, in 2007, on the theme of Hodge theoretic motives associated to various geometric objects. Starting with the topological setting, the notes go on to Hodge theory and mixed Hodge theory on the cohomology of varieties. Degenerations, limiting mixed Hodge structures and the relation to singularities are addressed next. The original proof of Bittner's theorem on the Grothendieck group of varieties, with some applications, is presented as an appendix to one of the chapters. The situation of relative varieties is addressed next using the machinery of mixed Hodge modules. Chern classes for singular varieties are explained in the motivic setting using Bittner's approach, and their full functorial meaning is made apparent using mixed Hodge modules. An appendix explains the treatment of Hodge characteristic in relation with motivic integration and string theory. Throughout these notes, emphasis is placed on explaining concepts and giving examples.

Book Lecture Notes on Motivic Cohomology

Download or read book Lecture Notes on Motivic Cohomology written by Carlo Mazza and published by American Mathematical Soc.. This book was released on 2006 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural. This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (etale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five. The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians. Information for our distributors: Titles in this series are copublished with the Clay Mathematics Institute (Cambridge, MA).

Book Mixed Hodge Structures

    Book Details:
  • Author : Chris A.M. Peters
  • Publisher : Springer Science & Business Media
  • Release : 2008-02-27
  • ISBN : 3540770178
  • Pages : 467 pages

Download or read book Mixed Hodge Structures written by Chris A.M. Peters and published by Springer Science & Business Media. This book was released on 2008-02-27 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is comprehensive basic monograph on mixed Hodge structures. Building up from basic Hodge theory the book explains Delingne's mixed Hodge theory in a detailed fashion. Then both Hain's and Morgan's approaches to mixed Hodge theory related to homotopy theory are sketched. Next comes the relative theory, and then the all encompassing theory of mixed Hodge modules. The book is interlaced with chapters containing applications. Three large appendices complete the book.

Book A Course in Hodge Theory

Download or read book A Course in Hodge Theory written by Hossein Movasati and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers an examination of the precursors of Hodge theory: first, the studies of elliptic and abelian integrals by Cauchy, Abel, Jacobi, and Riemann; and then the studies of two-dimensional multiple integrals by Poincare and Picard. The focus turns to the Hodge theory of affine hypersurfaces given by tame polynomials.

Book Motivic Homotopy Theory

    Book Details:
  • Author : Bjorn Ian Dundas
  • Publisher : Springer Science & Business Media
  • Release : 2007-07-11
  • ISBN : 3540458972
  • Pages : 228 pages

Download or read book Motivic Homotopy Theory written by Bjorn Ian Dundas and published by Springer Science & Business Media. This book was released on 2007-07-11 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.

Book Mixed Hodge Structures and Singularities

Download or read book Mixed Hodge Structures and Singularities written by Valentine S. Kulikov and published by Cambridge University Press. This book was released on 1998-04-27 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This vital work is both an introduction to, and a survey of singularity theory, in particular, studying singularities by means of differential forms. Here, some ideas and notions that arose in global algebraic geometry, namely mixed Hodge structures and the theory of period maps, are developed in the local situation to study the case of isolated singularities of holomorphic functions. The author introduces the Gauss-Manin connection on the vanishing cohomology of a singularity, that is on the cohomology fibration associated to the Milnor fibration, and draws on the work of Brieskorn and Steenbrink to calculate this connection, and the limit mixed Hodge structure. This is an excellent resource for all researchers in singularity theory, algebraic or differential geometry.

Book Topology of Stratified Spaces

Download or read book Topology of Stratified Spaces written by Greg Friedman and published by Cambridge University Press. This book was released on 2011-03-28 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the study of singular spaces using techniques from areas within geometry and topology and the interactions among them.

Book Feynman Motives

    Book Details:
  • Author : Matilde Marcolli
  • Publisher : World Scientific
  • Release : 2010
  • ISBN : 9814271217
  • Pages : 234 pages

Download or read book Feynman Motives written by Matilde Marcolli and published by World Scientific. This book was released on 2010 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer. Two different approaches to the subject are described. The first, a OC bottom-upOCO approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of BlochOCoEsnaultOCoKreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, OC top-downOCO approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a RiemannOCoHilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry. The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area. Sample Chapter(s). Chapter 1: Perturbative quantum field theory and Feynman diagrams (350 KB). Contents: Perturbative Quantum Field Theory and Feynman Diagrams; Motives and Periods; Feynman Integrals and Algebraic Varieties; Feynman Integrals and GelfandOCoLeray Forms; ConnesOCoKreimer Theory in a Nutshell; The RiemannOCoHilbert Correspondence; The Geometry of DimReg; Renormalization, Singularities, and Hodge Structures; Beyond Scalar Theories. Readership: Graduate students and researchers in mathematical physics and theoretical physics.

Book Proceedings of the International Congress of Mathematicians 2010  icm 2010   in 4 Volumes    Vol  I  Plenary Lectures and Ceremonies  Vols  Ii iv  Invited Lectures

Download or read book Proceedings of the International Congress of Mathematicians 2010 icm 2010 in 4 Volumes Vol I Plenary Lectures and Ceremonies Vols Ii iv Invited Lectures written by and published by World Scientific. This book was released on 2011 with total page 814 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book International Press Conference on Motives  Polylogarithms and Hodge Theory  Hodge theory

Download or read book International Press Conference on Motives Polylogarithms and Hodge Theory Hodge theory written by Fedor Bogomolov and published by . This book was released on 2002 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second of two volumes exploring the subject of motives, polylogarithms and Hodge theory. This text includes articles by Carlos Simpson, Donu Arapura, Ludmil Katzarkov, Tony Pantev, Alexander Reznikob, and Constantin Teleman. Both volumes are also available as a set.

Book Motives

    Book Details:
  • Author :
  • Publisher : American Mathematical Soc.
  • Release : 1994-02-28
  • ISBN : 0821827987
  • Pages : 694 pages

Download or read book Motives written by and published by American Mathematical Soc.. This book was released on 1994-02-28 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Motives' were introduced in the mid-1960s by Grothendieck to explain the analogies among the various cohomology theories for algebraic varieties, and to play the role of the missing rational cohomology. This work contains the texts of the lectures presented at the AMS-IMS-SIAM Joint Summer Research Conference on Motives, held in Seattle, in 1991.

Book Period Mappings and Period Domains

Download or read book Period Mappings and Period Domains written by James Carlson and published by Cambridge University Press. This book was released on 2017-08-11 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: This up-to-date introduction to Griffiths' theory of period maps and period domains focusses on algebraic, group-theoretic and differential geometric aspects. Starting with an explanation of Griffiths' basic theory, the authors go on to introduce spectral sequences and Koszul complexes that are used to derive results about cycles on higher-dimensional algebraic varieties such as the Noether–Lefschetz theorem and Nori's theorem. They explain differential geometric methods, leading up to proofs of Arakelov-type theorems, the theorem of the fixed part and the rigidity theorem. They also use Higgs bundles and harmonic maps to prove the striking result that not all compact quotients of period domains are Kähler. This thoroughly revised second edition includes a new third part covering important recent developments, in which the group-theoretic approach to Hodge structures is explained, leading to Mumford–Tate groups and their associated domains, the Mumford–Tate varieties and generalizations of Shimura varieties.

Book Algebraic Geometry and Number Theory

Download or read book Algebraic Geometry and Number Theory written by Hussein Mourtada and published by Birkhäuser. This book was released on 2017-05-07 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.

Book Transcendental Aspects of Algebraic Cycles

Download or read book Transcendental Aspects of Algebraic Cycles written by S. Müller-Stach and published by Cambridge University Press. This book was released on 2004-04-20 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lecture notes for graduates or researchers wishing to enter this modern field of research.

Book Hodge Theory and L2 analysis

Download or read book Hodge Theory and L2 analysis written by Lizhen Ji and published by . This book was released on 2017 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of survey papers and introductions pertaining to Hodge theory, variation of Hodge structures, L�-methods in complex analysis and geometry, and related results in algebraic geometry. Contributors include some of the world's leading experts: Ayoub, Bierstone, Griffiths, M. Green, Hain, and Ohsawa.

Book Global Aspects of Complex Geometry

Download or read book Global Aspects of Complex Geometry written by Fabrizio Catanese and published by Springer Science & Business Media. This book was released on 2006-09-29 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of surveys present an overview of recent developments in Complex Geometry. Topics range from curve and surface theory through special varieties in higher dimensions, moduli theory, Kähler geometry, and group actions to Hodge theory and characteristic p-geometry. Written by established experts this book will be a must for mathematicians working in Complex Geometry

Book The Grothendieck Festschrift  Volume I

Download or read book The Grothendieck Festschrift Volume I written by Pierre Cartier and published by Springer Science & Business Media. This book was released on 2009-05-21 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three-volume work contains articles collected on the occasion of Alexander Grothendieck’s sixtieth birthday and originally published in 1990. The articles were offered as a tribute to one of the world’s greatest living mathematicians. Many of the groundbreaking contributions in these volumes contain material that is now considered foundational to the subject. Topics addressed by these top-notch contributors match the breadth of Grothendieck’s own interests, including: functional analysis, algebraic geometry, algebraic topology, number theory, representation theory, K-theory, category theory, and homological algebra.