EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Quantum Monte Carlo Methods in Condensed Matter Physics

Download or read book Quantum Monte Carlo Methods in Condensed Matter Physics written by Masuo Suzuki and published by World Scientific. This book was released on 1993 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews recent developments of quantum Monte Carlo methods and some remarkable applications to interacting quantum spin systems and strongly correlated electron systems. It contains twenty-two papers by thirty authors. Some of the features are as follows. The first paper gives the foundations of the standard quantum Monte Carlo method, including some recent results on higher-order decompositions of exponential operators and ordered exponentials. The second paper presents a general review of quantum Monte Carlo methods used in the present book. One of the most challenging problems in the field of quantum Monte Carlo techniques, the negative-sign problem, is also discussed and new methods proposed to partially overcome it. In addition, low-dimensional quantum spin systems are studied. Some interesting applications of quantum Monte Carlo methods to fermion systems are also presented to investigate the role of strong correlations and fluctuations of electrons and to clarify the mechanism of high-c superconductivity. Not only thermal properties but also quantum-mechanical ground-state properties have been studied by the projection technique using auxiliary fields. Further, the Haldane gap is confirmed by numerical calculations. Active researchers in the forefront of condensed matter physics as well as young graduate students who want to start learning the quantum Monte Carlo methods will find this book useful.

Book Quantum Monte Carlo Approaches for Correlated Systems

Download or read book Quantum Monte Carlo Approaches for Correlated Systems written by Federico Becca and published by Cambridge University Press. This book was released on 2017-11-30 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to state-of-the-art quantum Monte Carlo techniques for applications in strongly-interacting systems. Including variational wave functions, stochastic samplings, the variational technique, optimisation techniques, real-time dynamics and projection methods and recent developments on the continuum space. An extensive resource for students and researchers.

Book An Introduction to Quantum Monte Carlo Methods

Download or read book An Introduction to Quantum Monte Carlo Methods written by Tao Pang and published by Morgan & Claypool Publishers. This book was released on 2016-12-07 with total page 87 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods have been very prominent in computer simulation of various systems in physics, chemistry, biology, and materials science. This book focuses on the discussion and path-integral quantum Monte Carlo methods in many-body physics and provides a concise but complete introduction to the Metropolis algorithm and its applications in these two techniques. To explore the schemes in clarity, several quantum many-body systems are analysed and studied in detail. The book includes exercises to help digest the materials covered. It can be used as a tutorial to learn the discussion and path-integral Monte Carlo or a recipe for developing new research in the reader's own area. Two complete Java programs, one for the discussion Monte Carlo of 4^He clusters on a graphite surface and the other for the path-integral Monte Carlo of cold atoms in a potential trap, are ready for download and adoption.

Book Quantum Monte Carlo Methods in Physics and Chemistry

Download or read book Quantum Monte Carlo Methods in Physics and Chemistry written by M.P. Nightingale and published by Springer Science & Business Media. This book was released on 1998-12-31 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years there has been a considerable growth in interest in Monte Carlo methods, and quantum Monte Carlo methods in particlular. Clearly, the ever-increasing computational power available to researchers, has stimulated the development of improved algorithms, and almost all fields in computational physics and chemistry are affected by their applications. Here we just mention some fields that are covered in the lecture notes contained in this volume, viz. electronic structure studies of atoms, molecules and solids, nuclear structure, and low- or zero-temperature studies of strongly-correlated quantum systems, both of the continuum and lattice variety, and cooperative phenomena in classical systems. Although each area of application may have its own peculiarities, requiring specialized solutions, all share the same basic methodology. It was with the intention of bringing together researchers and students from these various areas that the NATO Advanced Study Institute on Quantum Monte Carlo Methods in Physics and Chemistry was held at Cornell University from 12 to 24 July, 1998. This book contains material presented at the Institute in a series of mini courses in quantum Monte Carlo methods. The program consisted of lectures predominantly of a pedagogical nature, and of more specialized seminars. The levels varied from introductory to advanced, and from basic methods to applications; the program was intended for an audience working towards the Ph.D. level and above. Despite the essentially pedagogic nature of the Institute, several of the lectures and seminars contained in this volume present recent developments not previously published.

Book Monte Carlo Studies of Quantum Many body Systems

Download or read book Monte Carlo Studies of Quantum Many body Systems written by Shiwei Zhang and published by . This book was released on 1993 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Monte Carlo Methods in Quantum Problems

Download or read book Monte Carlo Methods in Quantum Problems written by M.H. Kalos and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods have been a tool of theoretical and computational scientists for many years. In particular, the invention and percolation of the algorithm of Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller sparked a rapid growth of applications to classical statistical mechanics. Although proposals for treatment of quantum systems had been made even earlier, only a few serious calculations had heen carried out. Ruch calculations are generally more consuming of computer resources than for classical systems and no universal algorithm had--or indeed has yet-- emerged. However, with advances in techniques and in sheer computing power, Monte Carlo methods have been used with considerable success in treating quantum fluids and crystals, simple models of nuclear matter, and few-body nuclei. Research at several institutions suggest that they may offer a new approach to quantum chemistry, one that is independent of basis ann yet capable of chemical accuracy. That. Monte Carlo methods can attain the very great precision needed is itself a remarkable achievement. More recently, new interest in such methods has arisen in two new a~as. Particle theorists, in particular K. Wilson, have drawn attention to the rich analogy between quantum field theoty and statistical mechanics and to the merits of Monte Carlo calculations for lattice gauge theories. This has become a rapidly growing sub-field. A related development is associated with lattice problems in quantum physics, particularly with models of solid state systems. The~ is much ferment in the calculation of various one-dimensional problems such as the'Hubbard model.

Book The Quantum Mechanics of Many Body Systems

Download or read book The Quantum Mechanics of Many Body Systems written by D.J. Thouless and published by Courier Corporation. This book was released on 2014-01-15 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Unabridged republication of the second edition of the work, originally published in the Pure and applied physics series by Academic Press, Inc., New York, in 1972"--Title page verso.

Book Computational Many Particle Physics

Download or read book Computational Many Particle Physics written by Holger Fehske and published by Springer. This book was released on 2007-12-10 with total page 780 pages. Available in PDF, EPUB and Kindle. Book excerpt: Looking for the real state of play in computational many-particle physics? Look no further. This book presents an overview of state-of-the-art numerical methods for studying interacting classical and quantum many-particle systems. A broad range of techniques and algorithms are covered, and emphasis is placed on their implementation on modern high-performance computers. This excellent book comes complete with online files and updates allowing readers to stay right up to date.

Book Quantum Monte Carlo Methods in Equilibrium and Nonequilibrium Systems

Download or read book Quantum Monte Carlo Methods in Equilibrium and Nonequilibrium Systems written by Masuo Suzuki and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Speech by Toyosaburo Taniguchi Dr. Kubo, Chairman, Distinguished Guests, and Friends, I am very happy, pleased and honored to be here this evening with so many distinguished guests, friends, and scholars from within this country and from different parts of the world. The Taniguchi Foundation wishes to extend a warm and sincere welcome to the many participants of the Ninth International Symposium on the Theory of Condensed Matter, which se ries was inaugurated eight years ago through the strenuous efforts of Dr. Ryogo Kubo, who is gracing us today with his presence. We are deeply indebted to Dr. Kubo, Dr. Suzuki, and their associates, who havE' spent an enormous amount of time and effort to make this particular symposium possible. We are convinced that the foundation should not be considered as what makes our symposium a success. The success is entirely due, I feel, to the continuous efforts of the Organizing Committee and of all those who have lent their support to this program. In this sense, your words of praise about the symposium, if any, should be directed to all of them. So far, I have met in person a total of 62 participants in this Division from 12 countries: Argentina, Belgium, Canada, Denmark, the Federal Republic of Germany, France, Ireland, Israel, Rumania, Switzerland, the United Kingdom, and the United States of America, with 133 participants from Japan. Those friends I have been privileged to make, I shall always treasure.

Book Introduction to Modern Methods of Quantum Many body Theory and Their Applications

Download or read book Introduction to Modern Methods of Quantum Many body Theory and Their Applications written by A. Fabrocini and published by World Scientific. This book was released on 2002 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains pedagogical articles on the dominant non-stochastic methods of microscopic many-body theories: Density functional theory, coupled cluster theory, and correlated basis functions methods in their widest sense. Further articles introduce students to applications of these methods in front -- line research such as Bose-Einstein condensates, the nuclear many-body problem, and the dynamics of quantum liquids. These keynote articles are supplemented by experimental reviews on intimately connected topics of current relevance. The book addresses the striking lack of pedagogical reference literature in the field that allows researchers to acquire the requisite physical insight and technical skills. The volume should, therefore, not only researchers to acquire the requisite physical insight and technical skills. The volume should, therefore, not only serve as a collection of information relevant to those who attended the school, but it provides be useful reference material to a broad range of theoretical physicists in condensed matter and nuclear theory.

Book Physics and Mathematics of Quantum Many Body Systems

Download or read book Physics and Mathematics of Quantum Many Body Systems written by Hal Tasaki and published by Springer Nature. This book was released on 2020-05-07 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a self-contained advanced textbook on the mathematical-physical aspects of quantum many-body systems, which begins with a pedagogical presentation of the necessary background information before moving on to subjects of active research, including topological phases of matter. The book explores in detail selected topics in quantum spin systems and lattice electron systems, namely, long-range order and spontaneous symmetry breaking in the antiferromagnetic Heisenberg model in two or higher dimensions (Part I), Haldane phenomena in antiferromagnetic quantum spin chains and related topics in topological phases of quantum matter (Part II), and the origin of magnetism in various versions of the Hubbard model (Part III). Each of these topics represents certain nontrivial phenomena or features that are invariably encountered in a variety of quantum many-body systems, including quantum field theory, condensed matter systems, cold atoms, and artificial quantum systems designed for future quantum computers. The book’s main focus is on universal properties of quantum many-body systems. The book includes roughly 50 problems with detailed solutions. The reader only requires elementary linear algebra and calculus to comprehend the material and work through the problems. Given its scope and format, the book is suitable both for self-study and as a textbook for graduate or advanced undergraduate classes.

Book Quantum Monte Carlo Methods in Condensed Matter Physics

Download or read book Quantum Monte Carlo Methods in Condensed Matter Physics written by M Suzuki and published by World Scientific. This book was released on 1993-12-30 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews recent developments of quantum Monte Carlo methods and some remarkable applications to interacting quantum spin systems and strongly correlated electron systems. It contains twenty-two papers by thirty authors. Some of the features are as follows. The first paper gives the foundations of the standard quantum Monte Carlo method, including some recent results on higher-order decompositions of exponential operators and ordered exponentials. The second paper presents a general review of quantum Monte Carlo methods used in the present book. One of the most challenging problems in the field of quantum Monte Carlo techniques, the negative-sign problem, is also discussed and new methods proposed to partially overcome it. In addition, low-dimensional quantum spin systems are studied. Some interesting applications of quantum Monte Carlo methods to fermion systems are also presented to investigate the role of strong correlations and fluctuations of electrons and to clarify the mechanism of high-Tc superconductivity. Not only thermal properties but also quantum-mechanical ground-state properties have been studied by the projection technique using auxiliary fields. Further, the Haldane gap is confirmed by numerical calculations. Active researchers in the forefront of condensed matter physics as well as young graduate students who want to start learning the quantum Monte Carlo methods will find this book useful. Contents:The Quantum Transfer Matrix and Its Application to Quantum Spin Chains (K Kubo)Transfer Matrices in Quantum Many-Body Systems (T Koma)Monte Carlo Calculations of Elementary Excitation (M Takahashi)The Decoupled Cell Method of Quantum Monte Carlo Calculation (S Homma)Decoupled Cell Monte Carlo Study of the Critical Properties of the Spin-1/2 Ferromagnetic Heisenberg Model in Three Dimensions (R J Creswick & C J Sisson)Variational Monte Carlo Studies of Correlated Electrons (H Shiba)Quantum Monte Carlo Simulation of Multiband Fermion Systems and Its Application to Superconductivity (K Kuroki & H Aoki)Quantum Monte Carlo in the Infinite Dimensional Limit (M Jarrell et al.)Aspects of the Sign Problem (J H Samson)Ground-State Projection Using Auxiliary Fields (S Fahy)Fermion Simulations of Correlated Systems (M Imada)Dirty Bosons in 2D: Phases and Phase Transitions (N Trivedi & M Makivic)and other papers Readership: Condensed matter physicists.

Book Quantum Scaling in Many Body Systems

Download or read book Quantum Scaling in Many Body Systems written by Mucio Continentino and published by Cambridge University Press. This book was released on 2017-04-17 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on experimental results, this updated edition approaches the problem of quantum phase transitions from a new and unifying perspective.

Book Quantum Many Body Physics of Ultracold Molecules in Optical Lattices

Download or read book Quantum Many Body Physics of Ultracold Molecules in Optical Lattices written by Michael L. Wall and published by Springer. This book was released on 2015-04-20 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis investigates ultracold molecules as a resource for novel quantum many-body physics, in particular by utilizing their rich internal structure and strong, long-range dipole-dipole interactions. In addition, numerical methods based on matrix product states are analyzed in detail, and general algorithms for investigating the static and dynamic properties of essentially arbitrary one-dimensional quantum many-body systems are put forth. Finally, this thesis covers open-source implementations of matrix product state algorithms, as well as educational material designed to aid in the use of understanding such methods.

Book Quantum Monte Carlo Methods

    Book Details:
  • Author : James Gubernatis
  • Publisher : Cambridge University Press
  • Release : 2016-06-02
  • ISBN : 1316483126
  • Pages : 503 pages

Download or read book Quantum Monte Carlo Methods written by James Gubernatis and published by Cambridge University Press. This book was released on 2016-06-02 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Featuring detailed explanations of the major algorithms used in quantum Monte Carlo simulations, this is the first textbook of its kind to provide a pedagogical overview of the field and its applications. The book provides a comprehensive introduction to the Monte Carlo method, its use, and its foundations, and examines algorithms for the simulation of quantum many-body lattice problems at finite and zero temperature. These algorithms include continuous-time loop and cluster algorithms for quantum spins, determinant methods for simulating fermions, power methods for computing ground and excited states, and the variational Monte Carlo method. Also discussed are continuous-time algorithms for quantum impurity models and their use within dynamical mean-field theory, along with algorithms for analytically continuing imaginary-time quantum Monte Carlo data. The parallelization of Monte Carlo simulations is also addressed. This is an essential resource for graduate students, teachers, and researchers interested in quantum Monte Carlo techniques.

Book Ultracold Atoms in Optical Lattices

Download or read book Ultracold Atoms in Optical Lattices written by Maciej Lewenstein and published by OUP Oxford. This book was released on 2012-03-08 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum computers, though not yet available on the market, will revolutionize the future of information processing. Quantum computers for special purposes like quantum simulators are already within reach. The physics of ultracold atoms, ions and molecules offer unprecedented possibilities of control of quantum many body systems and novel possibilities of applications to quantum information processing and quantum metrology. Particularly fascinating is the possibility of using ultracold atoms in lattices to simulate condensed matter or even high energy physics. This book provides a complete and comprehensive overview of ultracold lattice gases as quantum simulators. It opens up an interdisciplinary field involving atomic, molecular and optical physics, quantum optics, quantum information, condensed matter and high energy physics. The book includes some introductory chapters on basic concepts and methods, and then focuses on the physics of spinor, dipolar, disordered, and frustrated lattice gases. It reviews in detail the physics of artificial lattice gauge fields with ultracold gases. The last part of the book covers simulators of quantum computers. After a brief course in quantum information theory, the implementations of quantum computation with ultracold gases are discussed, as well as our current understanding of condensed matter from a quantum information perspective.

Book Applications of the Monte Carlo Method in Statistical Physics

Download or read book Applications of the Monte Carlo Method in Statistical Physics written by K. Binder and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo computer simulations are now a standard tool in scientific fields such as condensed-matter physics, including surface-physics and applied-physics problems (metallurgy, diffusion, and segregation, etc. ), chemical physics, including studies of solutions, chemical reactions, polymer statistics, etc. , and field theory. With the increasing ability of this method to deal with quantum-mechanical problems such as quantum spin systems or many-fermion problems, it will become useful for other questions in the fields of elementary-particle and nuclear physics as well. The large number of recent publications dealing either with applications or further development of some aspects of this method is a clear indication that the scientific community has realized the power and versatility of Monte Carlo simula tions, as well as of related simulation techniques such as "molecular dynamics" and "Langevin dynamics," which are only briefly mentioned in the present book. With the increasing availability of recent very-high-speed general-purpose computers, many problems become tractable which have so far escaped satisfactory treatment due to prac tical limitations (too small systems had to be chosen, or too short averaging times had to be used). While this approach is admittedly rather expensive, two cheaper alternatives have become available, too: (i) array or vector processors specifical ly suited for wide classes of simulation purposes; (ii) special purpose processors, which are built for a more specific class of problems or, in the extreme case, for the simulation of one single model system.