EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Introductory Econometrics

Download or read book Introductory Econometrics written by Humberto Barreto and published by Cambridge University Press. This book was released on 2006 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly accessible and innovative text with supporting web site uses Excel (R) to teach the core concepts of econometrics without advanced mathematics. It enables students to use Monte Carlo simulations in order to understand the data generating process and sampling distribution. Intelligent repetition of concrete examples effectively conveys the properties of the ordinary least squares (OLS) estimator and the nature of heteroskedasticity and autocorrelation. Coverage includes omitted variables, binary response models, basic time series, and simultaneous equations. The authors teach students how to construct their own real-world data sets drawn from the internet, which they can analyze with Excel (R) or with other econometric software. The accompanying web site with text support can be found at www.wabash.edu/econometrics.

Book Monte Carlo Simulation for Econometricians

Download or read book Monte Carlo Simulation for Econometricians written by Jan F. Kiviet and published by Foundations & Trends. This book was released on 2012 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo Simulation for Econometricians presents the fundamentals of Monte Carlo simulation (MCS), pointing to opportunities not often utilized in current practice, especially with regards to designing their general setup, controlling their accuracy, recognizing their shortcomings, and presenting their results in a coherent way. The author explores the properties of classic econometric inference techniques by simulation. The first three chapters focus on the basic tools of MCS. After treating the basic tools of MCS, Chapter 4 examines the crucial elements of analyzing the properties of asymptotic test procedures by MCS. Chapter 5 examines more general aspects of MCS, such as its history, possibilities to increase its efficiency and effectiveness, and whether synthetic random exogenous variables should be kept fixed over all the experiments or be treated as genuinely random and thus redrawn every replication. The simulation techniques that we discuss in the first five chapters are often addressed as naive or classic Monte Carlo methods. However, simulation can also be used not just for assessing the qualities of inference techniques, but also directly for obtaining inference in practice from empirical data. Various advanced inference techniques have been developed which incorporate simulation techniques. An early example of this is Monte Carlo testing, which corresponds to the parametric bootstrap technique. Chapter 6 highlights such techniques and presents a few examples of (semi-)parametric bootstrap techniques. This chapter also demonstrates that the bootstrap is not an alternative to MCS but just another practical inference technique, which uses simulation to produce econometric inference. Each chapter includes exercises allowing the reader to immerse in performing and interpreting MCS studies. The material has been used extensively in courses for undergraduate and graduate students. The various chapters all contain illustrations which throw light on what uses can be made from MCS to discover the finite sample properties of a broad range of alternative econometric methods with a focus on the rather basic models and techniques.

Book Monte Carlo Methods  Their Role for Econometrics

Download or read book Monte Carlo Methods Their Role for Econometrics written by Vincent Kerry Smith and published by . This book was released on 1973 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sequential Monte Carlo Methods in Practice

Download or read book Sequential Monte Carlo Methods in Practice written by Arnaud Doucet and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.

Book Introducing Monte Carlo Methods with R

Download or read book Introducing Monte Carlo Methods with R written by Christian Robert and published by Springer Science & Business Media. This book was released on 2010 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.

Book Handbook in Monte Carlo Simulation

Download or read book Handbook in Monte Carlo Simulation written by Paolo Brandimarte and published by John Wiley & Sons. This book was released on 2014-06-20 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible treatment of Monte Carlo methods, techniques, and applications in the field of finance and economics Providing readers with an in-depth and comprehensive guide, the Handbook in Monte Carlo Simulation: Applications in Financial Engineering, Risk Management, and Economics presents a timely account of the applicationsof Monte Carlo methods in financial engineering and economics. Written by an international leading expert in thefield, the handbook illustrates the challenges confronting present-day financial practitioners and provides various applicationsof Monte Carlo techniques to answer these issues. The book is organized into five parts: introduction andmotivation; input analysis, modeling, and estimation; random variate and sample path generation; output analysisand variance reduction; and applications ranging from option pricing and risk management to optimization. The Handbook in Monte Carlo Simulation features: An introductory section for basic material on stochastic modeling and estimation aimed at readers who may need a summary or review of the essentials Carefully crafted examples in order to spot potential pitfalls and drawbacks of each approach An accessible treatment of advanced topics such as low-discrepancy sequences, stochastic optimization, dynamic programming, risk measures, and Markov chain Monte Carlo methods Numerous pieces of R code used to illustrate fundamental ideas in concrete terms and encourage experimentation The Handbook in Monte Carlo Simulation: Applications in Financial Engineering, Risk Management, and Economics is a complete reference for practitioners in the fields of finance, business, applied statistics, econometrics, and engineering, as well as a supplement for MBA and graduate-level courses on Monte Carlo methods and simulation.

Book Monte Carlo Methods and Models in Finance and Insurance

Download or read book Monte Carlo Methods and Models in Finance and Insurance written by Ralf Korn and published by CRC Press. This book was released on 2010-02-26 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Rom

Book A Guide to Econometrics

Download or read book A Guide to Econometrics written by Peter Kennedy and published by John Wiley & Sons. This book was released on 2008-02-19 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dieses etwas andere Lehrbuch bietet keine vorgefertigten Rezepte und Problemlösungen, sondern eine kritische Diskussion ökonometrischer Modelle und Methoden: voller überraschender Fragen, skeptisch, humorvoll und anwendungsorientiert. Sein Erfolg gibt ihm Recht.

Book Monte Carlo Methods in Financial Engineering

Download or read book Monte Carlo Methods in Financial Engineering written by Paul Glasserman and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis

Book Advanced Lectures on Machine Learning

Download or read book Advanced Lectures on Machine Learning written by Olivier Bousquet and published by Springer. This book was released on 2011-03-22 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in Tübingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.

Book Computational Methods in Statistics and Econometrics

Download or read book Computational Methods in Statistics and Econometrics written by Hisashi Tanizaki and published by CRC Press. This book was released on 2004-01-21 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reflecting current technological capacities and analytical trends, Computational Methods in Statistics and Econometrics showcases Monte Carlo and nonparametric statistical methods for models, simulations, analyses, and interpretations of statistical and econometric data. The author explores applications of Monte Carlo methods in Bayesian estimation, state space modeling, and bias correction of ordinary least squares in autoregressive models. The book offers straightforward explanations of mathematical concepts, hundreds of figures and tables, and a range of empirical examples. A CD-ROM packaged with the book contains all of the source codes used in the text.

Book Monte Carlo Methods and Applications

Download or read book Monte Carlo Methods and Applications written by Karl K. Sabelfeld and published by Walter de Gruyter. This book was released on 2012-12-06 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the proceedings of the "8th IMACS Seminar on Monte Carlo Methods" held from August 29 to September 2, 2011 in Borovets, Bulgaria, and organized by the Institute of Information and Communication Technologies of the Bulgarian Academy of Sciences in cooperation with the International Association for Mathematics and Computers in Simulation (IMACS). Included are 24 papers which cover all topics presented in the sessions of the seminar: stochastic computation and complexity of high dimensional problems, sensitivity analysis, high-performance computations for Monte Carlo applications, stochastic metaheuristics for optimization problems, sequential Monte Carlo methods for large-scale problems, semiconductor devices and nanostructures. The history of the IMACS Seminar on Monte Carlo Methods goes back to April 1997 when the first MCM Seminar was organized in Brussels: 1st IMACS Seminar, 1997, Brussels, Belgium 2nd IMACS Seminar, 1999, Varna, Bulgaria 3rd IMACS Seminar, 2001, Salzburg, Austria 4th IMACS Seminar, 2003, Berlin, Germany 5th IMACS Seminar, 2005, Tallahassee, USA 6th IMACS Seminar, 2007, Reading, UK 7th IMACS Seminar, 2009, Brussels, Belgium 8th IMACS Seminar, 2011, Borovets, Bulgaria

Book The Oxford Handbook of Bayesian Econometrics

Download or read book The Oxford Handbook of Bayesian Econometrics written by John Geweke and published by Oxford University Press. This book was released on 2011-09-29 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. This handbook is a single source for researchers and policymakers wanting to learn about Bayesian methods in specialized fields, and for graduate students seeking to make the final step from textbook learning to the research frontier. It contains contributions by leading Bayesians on the latest developments in their specific fields of expertise. The volume provides broad coverage of the application of Bayesian econometrics in the major fields of economics and related disciplines, including macroeconomics, microeconomics, finance, and marketing. It reviews the state of the art in Bayesian econometric methodology, with chapters on posterior simulation and Markov chain Monte Carlo methods, Bayesian nonparametric techniques, and the specialized tools used by Bayesian time series econometricians such as state space models and particle filtering. It also includes chapters on Bayesian principles and methodology.

Book Handbook of Monte Carlo Methods

Download or read book Handbook of Monte Carlo Methods written by Dirk P. Kroese and published by John Wiley & Sons. This book was released on 2013-06-06 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.

Book Introduction to Computer Intensive Methods of Data Analysis in Biology

Download or read book Introduction to Computer Intensive Methods of Data Analysis in Biology written by Derek A. Roff and published by Cambridge University Press. This book was released on 2006-05-25 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description

Book Randomization  Bootstrap and Monte Carlo Methods in Biology

Download or read book Randomization Bootstrap and Monte Carlo Methods in Biology written by Bryan F.J. Manly and published by CRC Press. This book was released on 2020-07-21 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern computer-intensive statistical methods play a key role in solving many problems across a wide range of scientific disciplines. Like its bestselling predecessors, the fourth edition of Randomization, Bootstrap and Monte Carlo Methods in Biology illustrates a large number of statistical methods with an emphasis on biological applications. The focus is now on the use of randomization, bootstrapping, and Monte Carlo methods in constructing confidence intervals and doing tests of significance. The text provides comprehensive coverage of computer-intensive applications, with data sets available online. Features Presents an overview of computer-intensive statistical methods and applications in biology Covers a wide range of methods including bootstrap, Monte Carlo, ANOVA, regression, and Bayesian methods Makes it easy for biologists, researchers, and students to understand the methods used Provides information about computer programs and packages to implement calculations, particularly using R code Includes a large number of real examples from a range of biological disciplines Written in an accessible style, with minimal coverage of theoretical details, this book provides an excellent introduction to computer-intensive statistical methods for biological researchers. It can be used as a course text for graduate students, as well as a reference for researchers from a range of disciplines. The detailed, worked examples of real applications will enable practitioners to apply the methods to their own biological data.

Book Monte Carlo Simulation and Resampling Methods for Social Science

Download or read book Monte Carlo Simulation and Resampling Methods for Social Science written by Thomas M. Carsey and published by SAGE Publications. This book was released on 2013-08-05 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book examines abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator "in repeated samples," the book uses simulation to actually create those repeated samples and summarize the results. The book includes basic examples appropriate for readers learning the material for the first time, as well as more advanced examples that a researcher might use to evaluate an estimator he or she was using in an actual research project. The book also covers a wide range of topics related to Monte Carlo simulation, such as resampling methods, simulations of substantive theory, simulation of quantities of interest (QI) from model results, and cross-validation. Complete R code from all examples is provided so readers can replicate every analysis presented using R.