EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Monte Carlo Simulation in Statistical Physics

Download or read book Monte Carlo Simulation in Statistical Physics written by Kurt Binder and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: When learning very formal material one comes to a stage where one thinks one has understood the material. Confronted with a "realiife" problem, the passivity of this understanding sometimes becomes painfully elear. To be able to solve the problem, ideas, methods, etc. need to be ready at hand. They must be mastered (become active knowledge) in order to employ them successfully. Starting from this idea, the leitmotif, or aim, of this book has been to elose this gap as much as possible. How can this be done? The material presented here was born out of a series of lectures at the Summer School held at Figueira da Foz (Portugal) in 1987. The series of lectures was split into two concurrent parts. In one part the "formal material" was presented. Since the background of those attending varied widely, the presentation of the formal material was kept as pedagogic as possible. In the formal part the general ideas behind the Monte Carlo method were developed. The Monte Carlo method has now found widespread appli cation in many branches of science such as physics, chemistry, and biology. Because of this, the scope of the lectures had to be narrowed down. We could not give a complete account and restricted the treatment to the ap plication of the Monte Carlo method to the physics of phase transitions. Here particular emphasis is placed on finite-size effects.

Book Monte Carlo Methods in Statistical Physics

Download or read book Monte Carlo Methods in Statistical Physics written by M. E. J. Newman and published by Clarendon Press. This book was released on 1999-02-11 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the use of Monte Carlo computer simulation methods suitable for beginning graduate students and beyond. It is suitable for a course text for physics or chemistry departments or for self-teaching.

Book A Guide to Monte Carlo Simulations in Statistical Physics

Download or read book A Guide to Monte Carlo Simulations in Statistical Physics written by David P. Landau and published by Cambridge University Press. This book was released on 2005-09 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This updated edition deals with the Monte Carlo simulation of complex physical systems encountered in condensed-matter physics, statistical mechanics, and related fields. It contains many applications, examples, and exercises to help the reader. It is an excellent guide for graduate students and researchers who use computer simulations in their research.

Book A Guide to Monte Carlo Simulations in Statistical Physics

Download or read book A Guide to Monte Carlo Simulations in Statistical Physics written by David P. Landau and published by Cambridge University Press. This book was released on 2000-08-17 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes all aspects of Monte Carlo simulation of complex physical systems encountered in condensed-matter physics and statistical mechanics, as well as in related fields, such as polymer science and lattice gauge theory. The authors give a succinct overview of simple sampling methods and develop the importance sampling method. In addition they introduce quantum Monte Carlo methods, aspects of simulations of growth phenomena and other systems far from equilibrium, and the Monte Carlo Renormalization Group approach to critical phenomena. The book includes many applications, examples, and current references, and exercises to help the reader.

Book The Monte Carlo Method in Condensed Matter Physics

Download or read book The Monte Carlo Method in Condensed Matter Physics written by Kurt Binder and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Monte Carlo method is now widely used and commonly accepted as an important and useful tool in solid state physics and related fields. It is broadly recognized that the technique of "computer simulation" is complementary to both analytical theory and experiment, and can significantly contribute to ad vancing the understanding of various scientific problems. Widespread applications of the Monte Carlo method to various fields of the statistical mechanics of condensed matter physics have already been reviewed in two previously published books, namely Monte Carlo Methods in Statistical Physics (Topics Curro Phys. , Vol. 7, 1st edn. 1979, 2ndedn. 1986) and Applications of the Monte Carlo Method in Statistical Physics (Topics Curro Phys. , Vol. 36, 1st edn. 1984, 2nd edn. 1987). Meanwhile the field has continued its rapid growth and expansion, and applications to new fields have appeared that were not treated at all in the above two books (e. g. studies of irreversible growth phenomena, cellular automata, interfaces, and quantum problems on lattices). Also, new methodic aspects have emerged, such as aspects of efficient use of vector com puters or parallel computers, more efficient analysis of simulated systems con figurations, and methods to reduce critical slowing down at i>hase transitions. Taken together with the extensive activity in certain traditional areas of research (simulation of classical and quantum fluids, of macromolecular materials, of spin glasses and quadrupolar glasses, etc.

Book Monte Carlo Methods in Statistical Physics

Download or read book Monte Carlo Methods in Statistical Physics written by Kurt Binder and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the seven years since this volume first appeared. there has been an enormous expansion of the range of problems to which Monte Carlo computer simulation methods have been applied. This fact has already led to the addition of a companion volume ("Applications of the Monte Carlo Method in Statistical Physics", Topics in Current Physics. Vol . 36), edited in 1984, to this book. But the field continues to develop further; rapid progress is being made with respect to the implementation of Monte Carlo algorithms, the construction of special-purpose computers dedicated to exe cute Monte Carlo programs, and new methods to analyze the "data" generated by these programs. Brief descriptions of these and other developments, together with numerous addi tional references, are included in a new chapter , "Recent Trends in Monte Carlo Simulations" , which has been written for this second edition. Typographical correc tions have been made and fuller references given where appropriate, but otherwise the layout and contents of the other chapters are left unchanged. Thus this book, together with its companion volume mentioned above, gives a fairly complete and up to-date review of the field. It is hoped that the reduced price of this paperback edition will make it accessible to a wide range of scientists and students in the fields to which it is relevant: theoretical phYSics and physical chemistry , con densed-matter physics and materials science, computational physics and applied mathematics, etc.

Book Monte Carlo Methods in Statistical Physics

Download or read book Monte Carlo Methods in Statistical Physics written by M. E. J. Newman and published by Clarendon Press. This book was released on 1999-02-11 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to Monte Carlo simulations in classical statistical physics and is aimed both at students beginning work in the field and at more experienced researchers who wish to learn more about Monte Carlo methods. The material covered includes methods for both equilibrium and out of equilibrium systems, and common algorithms like the Metropolis and heat-bath algorithms are discussed in detail, as well as more sophisticated ones such as continuous time Monte Carlo, cluster algorithms, multigrid methods, entropic sampling and simulated tempering. Data analysis techniques are also explained starting with straightforward measurement and error-estimation techniques and progressing to topics such as the single and multiple histogram methods and finite size scaling. The last few chapters of the book are devoted to implementation issues, including discussions of such topics as lattice representations, efficient implementation of data structures, multispin coding, parallelization of Monte Carlo algorithms, and random number generation. At the end of the book the authors give a number of example programmes demonstrating the applications of these techniques to a variety of well-known models.

Book Forecasting in Mathematics

Download or read book Forecasting in Mathematics written by Abdo Abou Jaoude and published by BoD – Books on Demand. This book was released on 2021-01-27 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical probability and statistics are an attractive, thriving, and respectable part of mathematics. Some mathematicians and philosophers of science say they are the gateway to mathematics’ deepest mysteries. Moreover, mathematical statistics denotes an accumulation of mathematical discussions connected with efforts to most efficiently collect and use numerical data subject to random or deterministic variations. Currently, the concept of probability and mathematical statistics has become one of the fundamental notions of modern science and the philosophy of nature. This book is an illustration of the use of mathematics to solve specific problems in engineering, statistics, and science in general.

Book Statistical Mechanics  Algorithms and Computations

Download or read book Statistical Mechanics Algorithms and Computations written by Werner Krauth and published by Oxford University Press, USA. This book was released on 2006-09-14 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the computational approach in modern statistical physics in a clear and accessible way and demonstrates its close relation to other approaches in theoretical physics. Individual chapters focus on subjects as diverse as the hard sphere liquid, classical spin models, single quantum particles and Bose-Einstein condensation. Contained within the chapters are in-depth discussions of algorithms, ranging from basic enumeration methods to modern Monte Carlo techniques. The emphasis is on orientation, with discussion of implementation details kept to a minimum. Illustrations, tables and concise printed algorithms convey key information, making the material very accessible. The book is completely self-contained and graphs and tables can readily be reproduced, requiring minimal computer code. Most sections begin at an elementary level and lead on to the rich and difficult problems of contemporary computational and statistical physics. The book will be of interest to a wide range of students, teachers and researchers in physics and the neighbouring sciences. An accompanying CD allows incorporation of the book's content (illustrations, tables, schematic programs) into the reader's own presentations.

Book A Guide to Monte Carlo Simulations in Statistical Physics

Download or read book A Guide to Monte Carlo Simulations in Statistical Physics written by David Landau and published by Cambridge University Press. This book was released on 2021-07-29 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dealing with all aspects of Monte Carlo simulation of complex physical systems encountered in condensed matter physics and statistical mechanics, this book provides an introduction to computer simulations in physics. The 5th edition contains extensive new material describing numerous powerful algorithms and methods that represent recent developments in the field. New topics such as active matter and machine learning are also introduced. Throughout, there are many applications, examples, recipes, case studies, and exercises to help the reader fully comprehend the material. This book is ideal for graduate students and researchers, both in academia and industry, who want to learn techniques that have become a third tool of physical science, complementing experiment and analytical theory.

Book Monte Carlo Methods

    Book Details:
  • Author : Malvin H. Kalos
  • Publisher : John Wiley & Sons
  • Release : 2008-09-26
  • ISBN : 352761740X
  • Pages : 195 pages

Download or read book Monte Carlo Methods written by Malvin H. Kalos and published by John Wiley & Sons. This book was released on 2008-09-26 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to Monte Carlo Methods seeks to identify and study the unifying elements that underlie their effective application. It focuses on two basic themes. The first is the importance of random walks as they occur both in natural stochastic systems and in their relationship to integral and differential equations. The second theme is that of variance reduction in general and importance sampling in particular as a technique for efficient use of the methods. Random walks are introduced with an elementary example in which the modelling of radiation transport arises directly from a schematic probabilistic description of the interaction of radiation with matter. Building on that example, the relationship between random walks and integral equations is outlined. The applicability of these ideas to other problems is shown by a clear and elementary introduction to the solution of the Schrodinger equation by random walks. The detailed discussion of variance reduction includes Monte Carlo evaluation of finite-dimensional integrals. Special attention is given to importance sampling, partly because of its intrinsic interest in quadrature, partly because of its general usefulness in the solution of integral equations. One significant feature is that Monte Carlo Methods treats the "Metropolis algorithm" in the context of sampling methods, clearly distinguishing it from importance sampling. Physicists, chemists, statisticians, mathematicians, and computer scientists will find Monte Carlo Methods a complete and stimulating introduction.

Book A Guide to Monte Carlo Simulations in Statistical Physics

Download or read book A Guide to Monte Carlo Simulations in Statistical Physics written by David P. Landau and published by Cambridge University Press. This book was released on 2009-09-10 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dealing with all aspects of Monte Carlo simulation of complex physical systems encountered in condensed-matter physics and statistical mechanics, this book provides an introduction to computer simulations in physics. This edition now contains material describing powerful new algorithms that have appeared since the previous edition was published, and highlights recent technical advances and key applications that these algorithms now make possible. Updates also include several new sections and a chapter on the use of Monte Carlo simulations of biological molecules. Throughout the book there are many applications, examples, recipes, case studies, and exercises to help the reader understand the material. It is ideal for graduate students and researchers, both in academia and industry, who want to learn techniques that have become a third tool of physical science, complementing experiment and analytical theory.

Book Quantum Monte Carlo Methods

    Book Details:
  • Author : James Gubernatis
  • Publisher : Cambridge University Press
  • Release : 2016-06-02
  • ISBN : 1316483126
  • Pages : 503 pages

Download or read book Quantum Monte Carlo Methods written by James Gubernatis and published by Cambridge University Press. This book was released on 2016-06-02 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Featuring detailed explanations of the major algorithms used in quantum Monte Carlo simulations, this is the first textbook of its kind to provide a pedagogical overview of the field and its applications. The book provides a comprehensive introduction to the Monte Carlo method, its use, and its foundations, and examines algorithms for the simulation of quantum many-body lattice problems at finite and zero temperature. These algorithms include continuous-time loop and cluster algorithms for quantum spins, determinant methods for simulating fermions, power methods for computing ground and excited states, and the variational Monte Carlo method. Also discussed are continuous-time algorithms for quantum impurity models and their use within dynamical mean-field theory, along with algorithms for analytically continuing imaginary-time quantum Monte Carlo data. The parallelization of Monte Carlo simulations is also addressed. This is an essential resource for graduate students, teachers, and researchers interested in quantum Monte Carlo techniques.

Book Monte Carlo Methods in Quantum Problems

Download or read book Monte Carlo Methods in Quantum Problems written by M.H. Kalos and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods have been a tool of theoretical and computational scientists for many years. In particular, the invention and percolation of the algorithm of Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller sparked a rapid growth of applications to classical statistical mechanics. Although proposals for treatment of quantum systems had been made even earlier, only a few serious calculations had heen carried out. Ruch calculations are generally more consuming of computer resources than for classical systems and no universal algorithm had--or indeed has yet-- emerged. However, with advances in techniques and in sheer computing power, Monte Carlo methods have been used with considerable success in treating quantum fluids and crystals, simple models of nuclear matter, and few-body nuclei. Research at several institutions suggest that they may offer a new approach to quantum chemistry, one that is independent of basis ann yet capable of chemical accuracy. That. Monte Carlo methods can attain the very great precision needed is itself a remarkable achievement. More recently, new interest in such methods has arisen in two new a~as. Particle theorists, in particular K. Wilson, have drawn attention to the rich analogy between quantum field theoty and statistical mechanics and to the merits of Monte Carlo calculations for lattice gauge theories. This has become a rapidly growing sub-field. A related development is associated with lattice problems in quantum physics, particularly with models of solid state systems. The~ is much ferment in the calculation of various one-dimensional problems such as the'Hubbard model.

Book Explorations in Monte Carlo Methods

Download or read book Explorations in Monte Carlo Methods written by Ronald W. Shonkwiler and published by Springer Science & Business Media. This book was released on 2009-08-11 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods are among the most used and useful computational tools available today, providing efficient and practical algorithims to solve a wide range of scientific and engineering problems. Applications covered in this book include optimization, finance, statistical mechanics, birth and death processes, and gambling systems. Explorations in Monte Carlo Methods provides a hands-on approach to learning this subject. Each new idea is carefully motivated by a realistic problem, thus leading from questions to theory via examples and numerical simulations. Programming exercises are integrated throughout the text as the primary vehicle for learning the material. Each chapter ends with a large collection of problems illustrating and directing the material. This book is suitable as a textbook for students of engineering and the sciences, as well as mathematics.

Book Handbook of Monte Carlo Methods

Download or read book Handbook of Monte Carlo Methods written by Dirk P. Kroese and published by John Wiley & Sons. This book was released on 2013-06-06 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.

Book Functional Integration

    Book Details:
  • Author : Cécile Dewitt-Morette
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-11
  • ISBN : 1489903194
  • Pages : 436 pages

Download or read book Functional Integration written by Cécile Dewitt-Morette and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: The program of the Institute covered several aspects of functional integration -from a robust mathematical foundation to many applications, heuristic and rigorous, in mathematics, physics, and chemistry. It included analytic and numerical computational techniques. One of the goals was to encourage cross-fertilization between these various aspects and disciplines. The first week was focused on quantum and classical systems with a finite number of degrees of freedom; the second week on field theories. During the first week the basic course, given by P. Cartier, was a presentation of a recent rigorous approach to functional integration which does not resort to discretization, nor to analytic continuation. It provides a definition of functional integrals simpler and more powerful than the original ones. Could this approach accommodate the works presented by the other lecturers? Although much remains to be done before answering "Yes," there seems to be no major obstacle along the road. The other courses taught during the first week presented: a) a solid introduction to functional numerical techniques (A. Sokal) and their applications to functional integrals encountered in chemistry (N. Makri). b) integrals based on Poisson processes and their applications to wave propagation (S. K. Foong), in particular a wave-restorer or wave-designer algorithm yielding the initial wave profile when one can only observe its distortion through a dissipative medium. c) the formulation of a quantum equivalence principle (H. Kleinert) which. given the flat space theory, yields a well-defined quantum theory in spaces with curvature and torsion.