Download or read book Monte Carlo Methods written by Karl Karlovich Sabelʹfelʹd and published by Springer. This book was released on 1991-10-04 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with Random Walk Methods for solving multidimensional boundary value problems. Monte Carlo algorithms are constructed for three classes of problems: (1) potential theory, (2) elasticity, and (3) diffusion. Some of the advantages of our new methods as compared to conventional numerical methods are that they cater for stochasticities in the boundary value problems and complicated shapes of the boundaries.
Download or read book Boundary Value Problems of Heat Conduction written by M. Necati Ozisik and published by Courier Corporation. This book was released on 2002-01-01 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for first-year graduate courses in heat transfer, including topics relevant to aerospace engineering and chemical and nuclear engineering, this hardcover book deals systematically and comprehensively with modern mathematical methods of solving problems in heat conduction and diffusion. Includes illustrative examples and problems, plus helpful appendixes. 134 illustrations. 1968 edition.
Download or read book Monte Carlo Methods in Boundary Value Problems written by Karl Karlovich Sabelʹfelʹd and published by Springer. This book was released on 1991 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Boundary Value Problems of Heat Conduction written by M. Necati Ozisik and published by Courier Corporation. This book was released on 2013-11-26 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for first-year graduate courses in heat transfer, this volume includes topics relevant to chemical and nuclear engineering and aerospace engineering. The systematic and comprehensive treatment employs modern mathematical methods of solving problems in heat conduction and diffusion. Starting with precise coverage of heat flux as a vector, derivation of the conduction equations, integral-transform technique, and coordinate transformations, the text advances to problem characteristics peculiar to Cartesian, cylindrical, and spherical coordinates; application of Duhamel's method; solution of heat-conduction problems; and the integral method of solution of nonlinear conduction problems. Additional topics include useful transformations in the solution of nonlinear boundary value problems of heat conduction; numerical techniques such as the finite differences and the Monte Carlo method; and anisotropic solids in relation to resistivity and conductivity tensors. Illustrative examples and problems amplify the text, which is supplemented by helpful appendixes.
Download or read book Monte Carlo Methods for Applied Scientists written by Ivan T. Dimov and published by World Scientific. This book was released on 2008 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Monte Carlo method is inherently parallel and the extensive and rapid development in parallel computers, computational clusters and grids has resulted in renewed and increasing interest in this method. At the same time there has been an expansion in the application areas and the method is now widely used in many important areas of science including nuclear and semiconductor physics, statistical mechanics and heat and mass transfer.This book attempts to bridge the gap between theory and practice concentrating on modern algorithmic implementation on parallel architecture machines. Although a suitable text for final year postgraduate mathematicians and computational scientists it is principally aimed at the applied scientists: only a small amount of mathematical knowledge is assumed and theorem proving is kept to a minimum, with the main focus being on parallel algorithms development often to applied industrial problems.A selection of algorithms developed both for serial and parallel machines are provided.
Download or read book Spectral Models of Random Fields in Monte Carlo Methods written by Serge M. Prigarin and published by VSP. This book was released on 2001 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectral models were developed in the 1970s and have appeared to be very promising for various applications. Nowadays, spectral models are extensively used for stochastic simulation in atmosphere and ocean optics, turbulence theory, analysis of pollution transport for porous media, astrophysics, and other fields of science. The spectral models presented in this monograph represent a new class of numerical methods aimed at simulation of random processes and fields. The book is divided into four chapters, which deal with scalar spectral models and some of their applications, vector-valued spectral models, convergence of spectral models, and problems of optimisation and convergence for functional Monte Carlo methods. Furthermore, the monograph includes four appendices, in which auxiliary information is presented and additional problems are discussed. The book will be of value and interest to experts in Monte Carlo methods, as well as to those interested in the theory and applications of stochastic simulation.
Download or read book Monte Carlo Methods written by Karl K. Sabelfeld and published by Springer. This book was released on 1991 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with Random Walk Methods for solving multidimensional boundary value problems. Monte Carlo algorithms are constructed for three classes of problems: (1) potential theory, (2) elasticity, and (3) diffusion. Some of the advantages of our new methods as compared to conventional numerical methods are that they cater for stochasticities in the boundary value problems and complicated shapes of the boundaries.
Download or read book Stochastic Methods for Boundary Value Problems written by Karl K. Sabelfeld and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-09-26 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and chemistry. It includes Monte Carlo methods where the random walks live not only on the boundary, but also inside the domain. A variety of examples from capacitance calculations to electron dynamics in semiconductors are discussed to illustrate the viability of the approach. The book is written for mathematicians who work in the field of partial differential and integral equations, physicists and engineers dealing with computational methods and applied probability, for students and postgraduates studying mathematical physics and numerical mathematics. Contents: Introduction Random walk algorithms for solving integral equations Random walk-on-boundary algorithms for the Laplace equation Walk-on-boundary algorithms for the heat equation Spatial problems of elasticity Variants of the random walk on boundary for solving stationary potential problems Splitting and survival probabilities in random walk methods and applications A random WOS-based KMC method for electron–hole recombinations Monte Carlo methods for computing macromolecules properties and solving related problems Bibliography
Download or read book Global Optimization Methods in Geophysical Inversion written by Mrinal K. Sen and published by Cambridge University Press. This book was released on 2013-02-21 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date overview of global optimization methods used to formulate and interpret geophysical observations, for researchers, graduate students and professionals.
Download or read book Handbook of Monte Carlo Methods written by Dirk P. Kroese and published by John Wiley & Sons. This book was released on 2013-06-06 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.
Download or read book Monte Carlo Methods for Applied Scientists written by Ivan Dimov and published by World Scientific. This book was released on 2008 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Monte Carlo method is inherently parallel and the extensive and rapid development in parallel computers, computational clusters and grids has resulted in renewed and increasing interest in this method. At the same time there has been an expansion in the application areas and the method is now widely used in many important areas of science including nuclear and semiconductor physics, statistical mechanics and heat and mass transfer. This book attempts to bridge the gap between theory and practice concentrating on modern algorithmic implementation on parallel architecture machines. Although a suitable text for final year postgraduate mathematicians and computational scientists it is principally aimed at the applied scientists: only a small amount of mathematical knowledge is assumed and theorem proving is kept to a minimum, with the main focus being on parallel algorithms development often to applied industrial problems. A selection of algorithms developed both for serial and parallel machines are provided. Sample Chapter(s). Chapter 1: Introduction (231 KB). Contents: Basic Results of Monte Carlo Integration; Optimal Monte Carlo Method for Multidimensional Integrals of Smooth Functions; Iterative Monte Carlo Methods for Linear Equations; Markov Chain Monte Carlo Methods for Eigenvalue Problems; Monte Carlo Methods for Boundary-Value Problems (BVP); Superconvergent Monte Carlo for Density Function Simulation by B-Splines; Solving Non-Linear Equations; Algorithmic Effciency for Different Computer Models; Applications for Transport Modeling in Semiconductors and Nanowires. Readership: Applied scientists and mathematicians.
Download or read book Exploring Monte Carlo Methods written by William L. Dunn and published by Elsevier. This book was released on 2022-06-07 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploring Monte Carlo Methods, Second Edition provides a valuable introduction to the numerical methods that have come to be known as "Monte Carlo." This unique and trusted resource for course use, as well as researcher reference, offers accessible coverage, clear explanations and helpful examples throughout. Building from the basics, the text also includes applications in a variety of fields, such as physics, nuclear engineering, finance and investment, medical modeling and prediction, archaeology, geology and transportation planning. - Provides a comprehensive yet concise treatment of Monte Carlo methods - Uses the famous "Buffon's needle problem" as a unifying theme to illustrate the many aspects of Monte Carlo methods - Includes numerous exercises and useful appendices on: Certain mathematical functions, Bose Einstein functions, Fermi Dirac functions and Watson functions
Download or read book Monte Carlo Methods for Electromagnetics written by Matthew N.O. Sadiku and published by CRC Press. This book was released on 2018-10-03 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until now, novices had to painstakingly dig through the literature to discover how to use Monte Carlo techniques for solving electromagnetic problems. Written by one of the foremost researchers in the field, Monte Carlo Methods for Electromagnetics provides a solid understanding of these methods and their applications in electromagnetic computation. Including much of his own work, the author brings together essential information from several different publications. Using a simple, clear writing style, the author begins with a historical background and review of electromagnetic theory. After addressing probability and statistics, he introduces the finite difference method as well as the fixed and floating random walk Monte Carlo methods. The text then applies the Exodus method to Laplace’s and Poisson’s equations and presents Monte Carlo techniques for handing Neumann problems. It also deals with whole field computation using the Markov chain, applies Monte Carlo methods to time-varying diffusion problems, and explores wave scattering due to random rough surfaces. The final chapter covers multidimensional integration. Although numerical techniques have become the standard tools for solving practical, complex electromagnetic problems, there is no book currently available that focuses exclusively on Monte Carlo techniques for electromagnetics. Alleviating this problem, this book describes Monte Carlo methods as they are used in the field of electromagnetics.
Download or read book Backward Stochastic Differential Equations written by N El Karoui and published by CRC Press. This book was released on 1997-01-17 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the texts of seminars presented during the years 1995 and 1996 at the Université Paris VI and is the first attempt to present a survey on this subject. Starting from the classical conditions for existence and unicity of a solution in the most simple case-which requires more than basic stochartic calculus-several refinements on the hypotheses are introduced to obtain more general results.
Download or read book Random Walks on Boundary for Solving PDEs written by Karl K. Sabelfeld and published by Walter de Gruyter. This book was released on 2013-07-05 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents new probabilistic representations for classical boundary value problems of mathematical physics and is the first book devoted to the walk on boundary algorithms. Compared to the well-known Wiener and diffusion path integrals, the trajectories of random walks in this publication are simlated on the boundary of the domain as Markov chains generated by the kernels of the boundary integral equations equivalent to the original boundary value problem. The book opens with an introduction for solving the interior and exterior boundary values for the Laplace and heat equations, which is followed by applying this method to all main boundary value problems of the potential and elasticity theories.
Download or read book Stochastic Numerics for Mathematical Physics written by Grigori N. Milstein and published by Springer Nature. This book was released on 2021-12-03 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a substantially revised and expanded edition reflecting major developments in stochastic numerics since the first edition was published in 2004. The new topics, in particular, include mean-square and weak approximations in the case of nonglobally Lipschitz coefficients of Stochastic Differential Equations (SDEs) including the concept of rejecting trajectories; conditional probabilistic representations and their application to practical variance reduction using regression methods; multi-level Monte Carlo method; computing ergodic limits and additional classes of geometric integrators used in molecular dynamics; numerical methods for FBSDEs; approximation of parabolic SPDEs and nonlinear filtering problem based on the method of characteristics. SDEs have many applications in the natural sciences and in finance. Besides, the employment of probabilistic representations together with the Monte Carlo technique allows us to reduce the solution of multi-dimensional problems for partial differential equations to the integration of stochastic equations. This approach leads to powerful computational mathematics that is presented in the treatise. Many special schemes for SDEs are presented. In the second part of the book numerical methods for solving complicated problems for partial differential equations occurring in practical applications, both linear and nonlinear, are constructed. All the methods are presented with proofs and hence founded on rigorous reasoning, thus giving the book textbook potential. An overwhelming majority of the methods are accompanied by the corresponding numerical algorithms which are ready for implementation in practice. The book addresses researchers and graduate students in numerical analysis, applied probability, physics, chemistry, and engineering as well as mathematical biology and financial mathematics.
Download or read book Monte Carlo Methods written by J. Hammersley and published by Springer Science & Business Media. This book was released on 2013-03-07 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph surveys the present state of Monte Carlo methods. we have dallied with certain topics that have interested us Although personally, we hope that our coverage of the subject is reasonably complete; at least we believe that this book and the references in it come near to exhausting the present range of the subject. On the other hand, there are many loose ends; for example we mention various ideas for variance reduction that have never been seriously appli(:d in practice. This is inevitable, and typical of a subject that has remained in its infancy for twenty years or more. We are convinced Qf:ver theless that Monte Carlo methods will one day reach an impressive maturity. The main theoretical content of this book is in Chapter 5; some readers may like to begin with this chapter, referring back to Chapters 2 and 3 when necessary. Chapters 7 to 12 deal with applications of the Monte Carlo method in various fields, and can be read in any order. For the sake of completeness, we cast a very brief glance in Chapter 4 at the direct simulation used in industrial and operational research, where the very simplest Monte Carlo techniques are usually sufficient. We assume that the reader has what might roughly be described as a 'graduate' knowledge of mathematics. The actual mathematical techniques are, with few exceptions, quite elementary, but we have freely used vectors, matrices, and similar mathematical language for the sake of conciseness.