EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Monolithic Integration of Three five Semiconductor Materials and Devices with Silicon

Download or read book Monolithic Integration of Three five Semiconductor Materials and Devices with Silicon written by Steve Ming Ting and published by . This book was released on 1999 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Platform for Monolithic Integration of III V Devices with Si CMOS Technology

Download or read book Platform for Monolithic Integration of III V Devices with Si CMOS Technology written by Nan Yang Pacella and published by . This book was released on 2012 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monolithic integration of III-V compound semiconductors and Si complementary metal-oxide- semiconductor (CMOS) enables the creation of advanced circuits with new functionalities. In order to merge the two technologies, compatible substrate platforms and processing approaches must be developed. The Silicon on Lattice Engineered Silicon (SOLES) substrate allows monolithic integration. It is a Si substrate with embedded III-V template layer, which supports epitaxial IIIV device growth, consistent with present II-V technology. The structure is capped with a silicon-on-insulator (SOI) layer, which enables processing of CMOS devices. The processes required for fabricating and utilizing SOLES wafers which have Ge or InP as the III-V template layers are explored. Allowable thermal budgets are important to consider because the substrate must withstand the thermal budget of all subsequent device processing steps. The maximum processing temperature of Ge SOLES is found to be limited by its melting point. However, Ge diffuses through the buried Si0 2 and must be contained. Solutions include 1) limiting device processing thermal budgets, 2) improving buried silicon dioxide quality and 3) incorporating a silicon nitride diffusion barrier. InP SOLES substrates are created using wafer bonding and layer transfer of silicon, SOI and InP-on-Si wafers, established using a two-step growth method. Two different InP SOLES structures are demonstrated and their allowable thermal budgets are investigated. The thermal budgets appear to be limited by low quality silicon dioxide used for wafer bonding. For ultimate integration, parallel metallization of the III-V and CMOS devices is sought. A method of making ohmic contact to III-V materials through Si encapsulation layers, using Si CMOS technology, is established. The metallurgies and electrical characteristics of nickel silicide structures on Si/III-V films are investigated and the NiSi/Si/III-V structure is found to be optimal. This structure is composed of a standard NiSi/Si interface and novel Si/III-V interface. Specific contact resistivity of the double hetero-interface stack can be tuned by controlling Si/IIIV band alignments at the epitaxial growth interface. P-type Si/GaAs interfaces and n-type Si/InGaAs interfaces create ohmic contacts with the lowest specific contact resistivity and present viable structures for integration. A Si-encapsulated GaAs/AlGaAs laser with NiSi front-side contact is demonstrated and confirms the feasibility of these contact structures.

Book Monolithic Integration of III V Optoelectronics on Si

Download or read book Monolithic Integration of III V Optoelectronics on Si written by Ojin Kwon and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: Integration of III-V materials on Si substrates has been a driving force in the area of lattice-mismatched growth to selectively provide the complementary material properties of compound semiconductors within conventional Si technology. This materials integration potentially serves as a novel host for next generation technologies to maintain the current rate of progress in data speed and capacity. There are barriers present to integrate III-V materials to Si such as mismatches in lattice constant (for example, 4% between GaAs and Si, 8% for InP), crystal symmetry (polar vs. non-polar), thermal characteristics (typically over 250% thermal expansion coefficient difference between III-V materials and Si), and chemistry. Extensive efforts have focused on achieving successful integration of III-As materials (mainly GaAs/AlGaAs) on Si via heteroepitaxy, while advances in materials integration led state-of-the-art device performance by leveraging heteroepitaxial versatility to tailor material properties among compound III-V materials. Recent progress on graded SiGe relaxed buffers produced successful results with low threading dislocation density of [approx.] 1x106 cm−2 achieved for the relaxed Ge over large area Si wafers, consequently leading to outstanding device-quality GaAs materials grown on Si and high-performance optoelectronic devices. However, optoelectronic devices emitting in the visible portion of the spectrum have yet to be explored using this promising approach. The present work explores the untapped opportunities of integrated III-P materials on Si enabled by relaxed SiGe/Si, therefore verifying the concept of SiGe/Si that is broadly applicable for monolithically integrating optical and electronic technologies at the wafer level. One of the ultimate proofs for examining the quality of the materials being integrated is a demonstration of the stimulated emission. The generation of coherent light originates from interaction between photons and population-inverted minority carriers; therefore the epitaxial defects from the integration process are extremely critical. To date, the optical coherency of integrated III-P/Si materials in the visible spectrum have yet to be explored and there have been no reports made to achieve this goal by any means of heteroepitaxial integrations. This thesis reviews efforts toward achieving room temperature operating visible AlGaInP laser diodes grown on the relaxed SiGe/Si substrates by molecular beam epitaxy.

Book Graphene for Post Moore Silicon Optoelectronics

Download or read book Graphene for Post Moore Silicon Optoelectronics written by Yang Xu and published by John Wiley & Sons. This book was released on 2023-01-18 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene for Post-Moore Silicon Optoelectronics Provides timely coverage of an important research area that is highly relevant to advanced detection and control technology Projecting device performance beyond the scaling limits of Moore’s law requires technologies based on novel materials and device architecture. Due to its excellent electronic, thermal, and optical properties, graphene has emerged as a scalable, low-cost material with enormous integration possibilities for numerous optoelectronic applications. Graphene for Post-Moore Silicon Optoelectronics presents an up-to-date overview of the fundamentals, applications, challenges, and opportunities of integrating graphene and other 2D materials with silicon (Si) technologies. With an emphasis on graphene-silicon (Gr/Si) integrated devices in optoelectronics, this valuable resource also addresses emerging applications such as optoelectronic synaptic devices, optical modulators, and infrared image sensors. The book opens with an introduction to graphene for silicon optoelectronics, followed by chapters describing the growth, transfer, and physics of graphene/silicon junctions. Subsequent chapters each focus on a particular Gr/Si application, including high-performance photodetectors, solar energy harvesting devices, and hybrid waveguide devices. The book concludes by offering perspectives on the future challenges and prospects of Gr/Si optoelectronics, including the emergence of wafer-scale systems and neuromorphic optoelectronics. Illustrates the benefits of graphene-based electronics and hybrid device architectures that incorporate existing Si technology Covers all essential aspects of Gr/Si devices, including material synthesis, device fabrication, system integration, and related physics Summarizes current progress and future challenges of wafer-scale 2D-Si integrated optoelectronic devices Explores a wide range of Gr/Si devices, such as synaptic phototransistors, hybrid waveguide modulators, and graphene thermopile image sensors Graphene for Post-Moore Silicon Optoelectronics is essential reading for materials scientists, electronics engineers, and chemists in both academia and industry working with the next generation of Gr/Si devices.

Book Substrate Engineering for Monolithic Integration of III V Semiconductors with Si CMOS Technology

Download or read book Substrate Engineering for Monolithic Integration of III V Semiconductors with Si CMOS Technology written by Carl Lawrence Dohrman and published by . This book was released on 2008 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: (cont.) Adaptation of standard GaAs on Ge processes to this heteroepitaxial system resulted in mostly non-planar growth (similar to typical GaP growth on Si) with only limited regions of planar GaAsyP1-y layers on Si0.2Ge0.8 virtual substrates. Planar growth of GaAsyP1-y on Si0.3Ge0.7 virtual substrates was enabled by minimizing the atmospheric exposure of the Si0.3Ge0.7 as it is transferred between growth reactors, establishing that the GaAsyP1-y growth process on Si1-xGex is strongly affected by atmospheric contaminants. Further minimization of air exposure, through use of Si1-xGex homoepitaxial buffers and growth of Si1-xGex and GaAsyP1-y in a single reactor, is expected to further improve epitaxial quality across the entire lattice-matched GaAsyP1-y/Si1-xGex range, including GaP on Si.

Book Silicon Photonics IV

    Book Details:
  • Author : David J. Lockwood
  • Publisher : Springer Nature
  • Release : 2021-06-08
  • ISBN : 3030682226
  • Pages : 512 pages

Download or read book Silicon Photonics IV written by David J. Lockwood and published by Springer Nature. This book was released on 2021-06-08 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fourth book in the series Silicon Photonics gathers together reviews of recent advances in the field of silicon photonics that go beyond already established and applied concepts in this technology. The field of research and development in silicon photonics has moved beyond improvements of integrated circuits fabricated with complementary metal–oxide–semiconductor (CMOS) technology to applications in engineering, physics, chemistry, materials science, biology, and medicine. The chapters provided in this book by experts in their fields thus cover not only new research into the highly desired goal of light production in Group IV materials, but also new measurement regimes and novel technologies, particularly in information processing and telecommunication. The book is suited for graduate students, established scientists, and research engineers who want to update their knowledge in these new topics.

Book Heterogeneous Integration of III V and II IV Semiconductor Sheets Onto Silicon Substrate Through Electric Field Assisted Assembly for Device Applications

Download or read book Heterogeneous Integration of III V and II IV Semiconductor Sheets Onto Silicon Substrate Through Electric Field Assisted Assembly for Device Applications written by Scott Levin and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Market forces are creating a strong need to make value-added enhancements to silicon (Si) complementary metal-oxide semiconductor (CMOS) integrated circuit (IC) technology. One approach to achieve this goal is through continued scaling following Moore's law. With the future of device scaling being relatively uncertain in the next 10-20 years, it is important to find new ways to add value to CMOS. Theoretical projections show that monolithic three-dimensional (3D) integration of compound semiconductor (CS) devices can enhance the performance and functionality of future CMOS-based IC's. This becomes increasingly important with continued scaling. With each new technology node the interconnect pitch is reduced, increasing the RC delay. The net result is an increase in response time between circuit components, resulting in a greater need for 3D integration to minimize the length of the contact lines between CMOS and other non-digital functionalities. To achieve this complex goal, a flexible heterogeneous integration strategy is required that can incorporate a diverse selection of materials all onto a single substrate. Electric-field assisted assembly is a promising technique that allows for fast, low temperature and versatile integration of a large variety of materials onto alternative substrates. In this technique, particles can be assembled from solution at high yields, achieving sub-micron alignment registration to predefined features on the substrate. The approach is not limited by mismatch in coefficient of thermal expansion (CTE) and lattice constant, offering the flexibility to apply materials at the device layer, or any subsequent layer in the CMOS backend. In this thesis research, electric-field assisted assembly of micron-sized compound semiconductor (CS) sheets is studied through a combination of experiment and finite element method (FEM) modeling. This work presents a clear picture of charge distribution within an assembled particle on the substrate, and uses the model to accurately predict the preferred assembly position. The assembly position is confirmed experimentally, demonstrating reproducible sub-micron alignment accuracy with respect to patterned features on a substrate. Through a combination of electric-field assisted assembly and top down fabrication, a novel heterogeneous integration strategy is demonstrated. As a proof of concept, this technique is used to create In0.53Ga0.47As fin geometry p+-i-n+ junctions directly on Si substrates. The as-etched fin devices are not rectifying, but with annealing at 350oC in N2 for 20 minutes, the electrical properties are restored. This process is further developed to implement fin tunnel field-effect transistors (TFETs) and metal-oxide semiconductor field-effect transistors (MOSFETs) integrated on Si. While dry etch-induced damage degrades the TFET device performance, fin MOSFETs show considerably better device performance due to their majority carrier device operation. Fin MOSFETs have a subthreshold slope of 280mV/decade and an on/off ratio of ~103 at 100mV. Through technology aided computer design (TCAD) simulations, it is shown that MOSFET performance can be improved by implementing an optimized doping design. To further emphasize the versatility of this heterogeneous integration strategy, solution-synthesized germanium selenide (GeSe) particles are assembled onto Si substrates. GeSe offers promise for phase change memory applications and non-toxic solar cells, due to its bandgap in the visible spectrum and use of earth-abundant non-toxic elements. GeSe nanobelts are measured both with 2-pt and 4-pt single particle measurements, and a resistivity of 360 [omega]-cm is determined. This integration strategy is a reproducible technique for single particle measurements of solution-synthesized materials, something significantly lacking in the field. With such a technique, solution-synthesized particles can be evaluated for their use in future device applications.

Book Fibre Optic Communication Devices

Download or read book Fibre Optic Communication Devices written by Norbert Grote and published by Springer Science & Business Media. This book was released on 2001-01-26 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optoelectronic devices and fibre optics are the basis of cutting-edge communication systems. This monograph deals with the various components of these systems, including lasers, amplifiers, modulators, converters, filters, sensors, and more.

Book Chemical Abstracts

Download or read book Chemical Abstracts written by and published by . This book was released on 2002 with total page 2002 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicon Photonics

Download or read book Silicon Photonics written by Graham T. Reed and published by John Wiley & Sons. This book was released on 2008-05-23 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon photonics is currently a very active and progressive area of research, as silicon optical circuits have emerged as the replacement technology for copper-based circuits in communication and broadband networks. The demand for ever improving communications and computing performance continues, and this in turn means that photonic circuits are finding ever increasing application areas. This text provides an important and timely overview of the ‘hot topics’ in the field, covering the various aspects of the technology that form the research area of silicon photonics. With contributions from some of the world’s leading researchers in silicon photonics, this book collates the latest advances in the technology. Silicon Photonics: the State of the Art opens with a highly informative foreword, and continues to feature: the integrated photonic circuit; silicon photonic waveguides; photonic bandgap waveguides; mechanisms for optical modulation in silicon; silicon based light sources; optical detection technologies for silicon photonics; passive silicon photonic devices; photonic and electronic integration approaches; applications in communications and sensors. Silicon Photonics: the State of the Art covers the essential elements of the entire field that is silicon photonics and is therefore an invaluable text for photonics engineers and professionals working in the fields of optical networks, optical communications, and semiconductor electronics. It is also an informative reference for graduate students studying for PhD in fibre optics, integrated optics, optical networking, microelectronics, or telecommunications.

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2005 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book SiGe based Re engineering of Electronic Warfare Subsystems

Download or read book SiGe based Re engineering of Electronic Warfare Subsystems written by Wynand Lambrechts and published by Springer. This book was released on 2016-10-19 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers a thorough understanding of the applicability of new-generation silicon-germanium (SiGe) electronic subsystems for electronic warfare and defensive countermeasures in military contexts. It explains in detail the theoretical and technical background, and addresses all aspects of the integration of SiGe as an enabling technology for maritime, land, and airborne / spaceborne electronic warfare, including research, design, development, and implementation. The coverage is supported by mathematical derivations, informative illustrations, practical examples, and case studies. While SiGe technology provides speed, performance, and price advantages in many markets, to date only limited information has been available on its use in electronic warfare systems, especially in developing nations. Addressing that need, this book offers essential engineering guidelines that especially focus on the speed and reliability of current-generation SiGe circuits and highlight emerging innovations that help to ensure the sustainable long-term integration of SiGe into electronic warfare systems.

Book  Junction Level  Heterogeneous Integration of III V Materials with Si CMOS for Novel Asymmetric Field Effect Transistors

Download or read book Junction Level Heterogeneous Integration of III V Materials with Si CMOS for Novel Asymmetric Field Effect Transistors written by Yoon Jung Chang and published by . This book was released on 2016 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: Driven by Moore's law, semiconductor chips have become faster, denser and cheaper through aggressive dimension scaling. The continued scaling not only led to dramatic performance improvements in digital logic applications but also in mixed-mode and/or communication applications. Moreover, size/weight/power (SWAP) restrictions on all high-performance system components have resulted in multi-functional integration of multiple integrated circuits (ICs)/dies in 3D packages/ICs by various system-level approaches. However, these approaches still possess shortcomings and in order to truly benefit from the most advanced digital technologies, the future high-speed/high power devices for communication applications need to be fully integrated into a single CMOS chip. Due to limitations in Si device performance in high-frequency/power applications as well as expensive III-V compound semiconductor devices with low integration density, heterogeneous integration of compound semiconductor materials/devices with Si CMOS platform has emerged as a viable solution to low-cost high-performance ICs. In this study, we first discuss on channel and drain engineering approaches in the state-of-the-art multiple-gate field-effect transistor to integrate III-V compound semiconductor materials with Si CMOS for improved device performance in mixed-mode and/or communication applications. Then, growth, characterization and electrical analysis on small-area (diameter

Book Springer Handbook of Electronic and Photonic Materials

Download or read book Springer Handbook of Electronic and Photonic Materials written by Safa Kasap and published by Springer. This book was released on 2017-10-04 with total page 1536 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second, updated edition of this essential reference book provides a wealth of detail on a wide range of electronic and photonic materials, starting from fundamentals and building up to advanced topics and applications. Its extensive coverage, with clear illustrations and applications, carefully selected chapter sequencing and logical flow, makes it very different from other electronic materials handbooks. It has been written by professionals in the field and instructors who teach the subject at a university or in corporate laboratories. The Springer Handbook of Electronic and Photonic Materials, second edition, includes practical applications used as examples, details of experimental techniques, useful tables that summarize equations, and, most importantly, properties of various materials, as well as an extensive glossary. Along with significant updates to the content and the references, the second edition includes a number of new chapters such as those covering novel materials and selected applications. This handbook is a valuable resource for graduate students, researchers and practicing professionals working in the area of electronic, optoelectronic and photonic materials.

Book Molecular Beam Epitaxy

Download or read book Molecular Beam Epitaxy written by Mohamed Henini and published by Newnes. This book was released on 2012-12-31 with total page 745 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multi-contributor handbook discusses Molecular Beam Epitaxy (MBE), an epitaxial deposition technique which involves laying down layers of materials with atomic thicknesses on to substrates. It summarizes MBE research and application in epitaxial growth with close discussion and a ‘how to’ on processing molecular or atomic beams that occur on a surface of a heated crystalline substrate in a vacuum.MBE has expanded in importance over the past thirty years (in terms of unique authors, papers and conferences) from a pure research domain into commercial applications (prototype device structures and more at the advanced research stage). MBE is important because it enables new device phenomena and facilitates the production of multiple layered structures with extremely fine dimensional and compositional control. The techniques can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. This book covers the advances made by MBE both in research and mass production of electronic and optoelectronic devices. It includes new semiconductor materials, new device structures which are commercially available, and many more which are at the advanced research stage. Condenses fundamental science of MBE into a modern reference, speeding up literature review Discusses new materials, novel applications and new device structures, grounding current commercial applications with modern understanding in industry and research Coverage of MBE as mass production epitaxial technology enhances processing efficiency and throughput for semiconductor industry and nanostructured semiconductor materials research community

Book High Quality III V Semiconductor Integration on Si Using Van Der Waals Layered Material Buffer for Photonic Integration Applications

Download or read book High Quality III V Semiconductor Integration on Si Using Van Der Waals Layered Material Buffer for Photonic Integration Applications written by Yazeed Alaskar and published by . This book was released on 2016 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integration of arsenide-based III-V compound semiconductors on silicon (Si) has been the focus of significant research to integrate light sources on silicon, enabling an integrated optical solution for chip-chip interconnects in future computing systems, and to make cost-effective and efficient multi-junction solar cells on silicon substrates. The primary obstacle to success is the lattice and thermal expansion mismatches between the semiconductor compounds of interest and the silicon substrates. In this thesis, a novel heteroepitaxial growth technique, quasi van der Waals epitaxy, promises the ability to grow high quality As-based semiconductor compounds on silicon using a two-dimensional (2D) layered material as a buffer layer, where the van der Waals force is dominant between the layers, thus reducing the strain arising from lattice and thermal expansion coefficient mismatches. The main body of the thesis is structured in three parts. First, theoretical investigations of quasi van der Waals heteroepitaxial growth of arsenide-based III-V compounds on layered materials, such as graphene, Indium Selenide (InSe), Boron Nitride (h-BN) and Molybdenum Selenide (MoS2), where the surface free energy and adsorption energies of Ga, Al, In and As are calculated using DFT calculations. Second, experimental demonstration of a novel low temperature technique for quasi van der Waals heteroepitaxial growth of arsenide based III-V compounds on graphene using Molecular Beam Epitaxy (MBE) is described. Third, using Indium Selenide (InSe) as a buffer layer due to its relatively high surface free energy and stability at high growth temperatures, a high quality and defect-free InGaAs/GaAs double heterostrucure (DH) is integrated onto a GaAs/ Si structure. The crystal quality of GaAs shows the lowest defect density of GaAs grown directly on Si to date, making it a remarkable step toward obtaining optical emitters on silicon substatres. The optical properties of this heterostructure were characterized using micro-photoluminescence ( -PL), demonstrating room-temperature light emission out of the InGaAs/GaAs heterostructure integrated on thin GaAs on InSe/Si. Planar growth of GaAs thin films on layered materials is a potential route towards heteroepitaxial integration of GaAs on silicon in the developing field of silicon photonics.