Download or read book Monoidal Categories and Topological Field Theory written by Vladimir Turaev and published by Birkhäuser. This book was released on 2017-06-28 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to monoidal categories and their connections with 3-dimensional topological field theories. Starting with basic definitions, it proceeds to the forefront of current research. Part 1 introduces monoidal categories and several of their classes, including rigid, pivotal, spherical, fusion, braided, and modular categories. It then presents deep theorems of Müger on the center of a pivotal fusion category. These theorems are proved in Part 2 using the theory of Hopf monads. In Part 3 the authors define the notion of a topological quantum field theory (TQFT) and construct a Turaev-Viro-type 3-dimensional state sum TQFT from a spherical fusion category. Lastly, in Part 4 this construction is extended to 3-manifolds with colored ribbon graphs, yielding a so-called graph TQFT (and, consequently, a 3-2-1 extended TQFT). The authors then prove the main result of the monograph: the state sum graph TQFT derived from any spherical fusion category is isomorphic to the Reshetikhin-Turaev surgery graph TQFT derived from the center of that category. The book is of interest to researchers and students studying topological field theory, monoidal categories, Hopf algebras and Hopf monads.
Download or read book Monoidal Categories and Topological Field Theory written by Vladimir Turaev and published by Birkhäuser. This book was released on 2018-08-01 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to monoidal categories and their connections with 3-dimensional topological field theories. Starting with basic definitions, it proceeds to the forefront of current research. Part 1 introduces monoidal categories and several of their classes, including rigid, pivotal, spherical, fusion, braided, and modular categories. It then presents deep theorems of Müger on the center of a pivotal fusion category. These theorems are proved in Part 2 using the theory of Hopf monads. In Part 3 the authors define the notion of a topological quantum field theory (TQFT) and construct a Turaev-Viro-type 3-dimensional state sum TQFT from a spherical fusion category. Lastly, in Part 4 this construction is extended to 3-manifolds with colored ribbon graphs, yielding a so-called graph TQFT (and, consequently, a 3-2-1 extended TQFT). The authors then prove the main result of the monograph: the state sum graph TQFT derived from any spherical fusion category is isomorphic to the Reshetikhin-Turaev surgery graph TQFT derived from the center of that category. The book is of interest to researchers and students studying topological field theory, monoidal categories, Hopf algebras and Hopf monads.
Download or read book Monoidal Categories and Topological Field Theory written by Vladimir Turaev and published by . This book was released on 2017 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to monoidal categories and their connections with 3-dimensional topological field theories. Starting with basic definitions, it proceeds to the forefront of current research. Part 1 introduces monoidal categories and several of their classes, including rigid, pivotal, spherical, fusion, braided, and modular categories. It then presents deep theorems of Müger on the center of a pivotal fusion category. These theorems are proved in Part 2 using the theory of Hopf monads. In Part 3 the authors define the notion of a topological quantum field theory (TQFT) and construct a Turaev-Viro-type 3-dimensional state sum TQFT from a spherical fusion category. Lastly, in Part 4 this construction is extended to 3-manifolds with colored ribbon graphs, yielding a so-called graph TQFT (and, consequently, a 3-2-1 extended TQFT). The authors then prove the main result of the monograph: the state sum graph TQFT derived from any spherical fusion category is isomorphic to the Reshetikhin-Turaev surgery graph TQFT derived from the center of that category. The book is of interest to researchers and students studying topological field theory, monoidal categories, Hopf algebras and Hopf monads.
Download or read book Tensor Categories written by Pavel Etingof and published by American Mathematical Soc.. This book was released on 2016-08-05 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.
Download or read book Basic Concepts of Enriched Category Theory written by Gregory Maxwell Kelly and published by CUP Archive. This book was released on 1982-02-18 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Lectures on Tensor Categories and Modular Functors written by Bojko Bakalov and published by American Mathematical Soc.. This book was released on 2001 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an exposition of the relations among the following three topics: monoidal tensor categories (such as a category of representations of a quantum group), 3-dimensional topological quantum field theory, and 2-dimensional modular functors (which naturally arise in 2-dimensional conformal field theory). The following examples are discussed in detail: the category of representations of a quantum group at a root of unity and the Wess-Zumino-Witten modular functor. The idea that these topics are related first appeared in the physics literature in the study of quantum field theory. Pioneering works of Witten and Moore-Seiberg triggered an avalanche of papers, both physical and mathematical, exploring various aspects of these relations. Upon preparing to lecture on the topic at MIT, however, the authors discovered that the existing literature was difficult and that there were gaps to fill. The text is wholly expository and finely succinct. It gathers results, fills existing gaps, and simplifies some proofs. The book makes an important addition to the existing literature on the topic. It would be suitable as a course text at the advanced-graduate level.
Download or read book Category Theory in Context written by Emily Riehl and published by Courier Dover Publications. This book was released on 2017-03-09 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.
Download or read book Categories for the Working Mathematician written by Saunders Mac Lane and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.
Download or read book An Invitation to Applied Category Theory written by Brendan Fong and published by Cambridge University Press. This book was released on 2019-07-18 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Category theory reveals commonalities between structures of all sorts. This book shows its potential in science, engineering, and beyond.
Download or read book Category Theory for Programmers New Edition Hardcover written by Bartosz Milewski and published by . This book was released on 2019-08-24 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Category Theory is one of the most abstract branches of mathematics. It is usually taught to graduate students after they have mastered several other branches of mathematics, like algebra, topology, and group theory. It might, therefore, come as a shock that the basic concepts of category theory can be explained in relatively simple terms to anybody with some experience in programming.That's because, just like programming, category theory is about structure. Mathematicians discover structure in mathematical theories, programmers discover structure in computer programs. Well-structured programs are easier to understand and maintain and are less likely to contain bugs. Category theory provides the language to talk about structure and learning it will make you a better programmer.
Download or read book Basic Category Theory written by Tom Leinster and published by Cambridge University Press. This book was released on 2014-07-24 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: A short introduction ideal for students learning category theory for the first time.
Download or read book Higher Operads Higher Categories written by Tom Leinster and published by Cambridge University Press. This book was released on 2004-07-22 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of higher dimensional category theory for graduate students and researchers in mathematics and mathematical physics.
Download or read book Category Theory for the Sciences written by David I. Spivak and published by MIT Press. This book was released on 2014-10-17 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to category theory as a rigorous, flexible, and coherent modeling language that can be used across the sciences. Category theory was invented in the 1940s to unify and synthesize different areas in mathematics, and it has proven remarkably successful in enabling powerful communication between disparate fields and subfields within mathematics. This book shows that category theory can be useful outside of mathematics as a rigorous, flexible, and coherent modeling language throughout the sciences. Information is inherently dynamic; the same ideas can be organized and reorganized in countless ways, and the ability to translate between such organizational structures is becoming increasingly important in the sciences. Category theory offers a unifying framework for information modeling that can facilitate the translation of knowledge between disciplines. Written in an engaging and straightforward style, and assuming little background in mathematics, the book is rigorous but accessible to non-mathematicians. Using databases as an entry to category theory, it begins with sets and functions, then introduces the reader to notions that are fundamental in mathematics: monoids, groups, orders, and graphs—categories in disguise. After explaining the “big three” concepts of category theory—categories, functors, and natural transformations—the book covers other topics, including limits, colimits, functor categories, sheaves, monads, and operads. The book explains category theory by examples and exercises rather than focusing on theorems and proofs. It includes more than 300 exercises, with solutions. Category Theory for the Sciences is intended to create a bridge between the vast array of mathematical concepts used by mathematicians and the models and frameworks of such scientific disciplines as computation, neuroscience, and physics.
Download or read book Monoidal Category Theory written by Noson S. Yanofsky and published by MIT Press. This book was released on 2024-11-05 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, cutting-edge, and highly readable textbook that makes category theory and monoidal category theory accessible to students across the sciences. Category theory is a powerful framework that began in mathematics but has since expanded to encompass several areas of computing and science, with broad applications in many fields. In this comprehensive text, Noson Yanofsky makes category theory accessible to those without a background in advanced mathematics. Monoidal Category Theorydemonstrates the expansive uses of categories, and in particular monoidal categories, throughout the sciences. The textbook starts from the basics of category theory and progresses to cutting edge research. Each idea is defined in simple terms and then brought alive by many real-world examples before progressing to theorems and uncomplicated proofs. Richly guided exercises ground readers in concrete computation and application. The result is a highly readable and engaging textbook that will open the world of category theory to many. Makes category theory accessible to non-math majors Uses easy-to-understand language and emphasizes diagrams over equations Incremental, iterative approach eases students into advanced concepts A series of embedded mini-courses cover such popular topics as quantum computing, categorical logic, self-referential paradoxes, databases and scheduling, and knot theory Extensive exercises and examples demonstrate the broad range of applications of categorical structures Modular structure allows instructors to fit text to the needs of different courses Instructor resources include slides
Download or read book 2 Dimensional Categories written by Niles Johnson and published by Oxford University Press, USA. This book was released on 2021-01-31 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2-Dimensional Categories is an introduction to 2-categories and bicategories, assuming only the most elementary aspects of category theory.
Download or read book Categorical Homotopy Theory written by Emily Riehl and published by Cambridge University Press. This book was released on 2014-05-26 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
Download or read book Categories for Quantum Theory written by Chris Heunen and published by Oxford University Press. This book was released on 2019-11-14 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monoidal category theory serves as a powerful framework for describing logical aspects of quantum theory, giving an abstract language for parallel and sequential composition, and a conceptual way to understand many high-level quantum phenomena. This text lays the foundation for this categorical quantum mechanics, with an emphasis on the graphical calculus which makes computation intuitive. Biproducts and dual objects are introduced and used to model superposition and entanglement, with quantum teleportation studied abstractly using these structures. Monoids, Frobenius structures and Hopf algebras are described, and it is shown how they can be used to model classical information and complementary observables. The CP construction, a categorical tool to describe probabilistic quantum systems, is also investigated. The last chapter introduces higher categories, surface diagrams and 2-Hilbert spaces, and shows how the language of duality in monoidal 2-categories can be used to reason about quantum protocols, including quantum teleportation and dense coding. Prior knowledge of linear algebra, quantum information or category theory would give an ideal background for studying this text, but it is not assumed, with essential background material given in a self-contained introductory chapter. Throughout the text links with many other areas are highlighted, such as representation theory, topology, quantum algebra, knot theory, and probability theory, and nonstandard models are presented, such as sets and relations. All results are stated rigorously, and full proofs are given as far as possible, making this book an invaluable reference for modern techniques in quantum logic, with much of the material not available in any other textbook.