Download or read book Geophysical Monitoring for Geologic Carbon Storage written by Lianjie Huang and published by John Wiley & Sons. This book was released on 2022-03-09 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods and techniques for monitoring subsurface carbon dioxide storage Storing carbon dioxide in underground geological formations is emerging as a promising technology to reduce carbon dioxide emissions in the atmosphere. A range of geophysical techniques can be deployed to remotely track carbon dioxide plumes and monitor changes in the subsurface, which is critical for ensuring for safe, long-term storage. Geophysical Monitoring for Geologic Carbon Storage provides a comprehensive review of different geophysical techniques currently in use and being developed, assessing their advantages and limitations. Volume highlights include: Geodetic and surface monitoring techniques Subsurface monitoring using seismic techniques Subsurface monitoring using non-seismic techniques Case studies of geophysical monitoring at different geologic carbon storage sites The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
Download or read book Geophysics and Geosequestration written by Thomas L. Davis and published by Cambridge University Press. This book was released on 2019-05-09 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the geophysical techniques and analysis methods for monitoring subsurface carbon dioxide storage for researchers and industry practitioners.
Download or read book Geologic Carbon Sequestration written by V. Vishal and published by Springer. This book was released on 2016-05-11 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.
Download or read book Geological Storage of CO2 in Deep Saline Formations written by Auli Niemi and published by Springer. This book was released on 2017-02-24 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers readers a comprehensive overview, and an in-depth understanding, of suitable methods for quantifying and characterizing saline aquifers for the geological storage of CO2. It begins with a general overview of the methodology and the processes that take place when CO2 is injected and stored in deep saline-water-containing formations. It subsequently presents mathematical and numerical models used for predicting the consequences of CO2 injection. This book provides descriptions of relevant experimental methods, from laboratory experiments to field scale site characterization and techniques for monitoring spreading of the injected CO2 within the formation. Experiences from a number of important field injection projects are reviewed, as are those from CO2 natural analog sites. Lastly, the book presents relevant risk management methods. Geological storage of CO2 is widely considered to be a key technology capable of substantially reducing the amount of CO2 released into the atmosphere, thereby reducing the negative impacts of such releases on the global climate. Around the world, projects are already in full swing, while others are now being initiated and executed to demonstrate the technology. Deep saline formations are the geological formations considered to hold the highest storage potential, due to their abundance worldwide. To date, however, these formations have been relatively poorly characterized, due to their low economic value. Accordingly, the processes involved in injecting and storing CO2 in such formations still need to be better quantified and methods for characterizing, modeling and monitoring this type of CO2 storage in such formations must be rapidly developed and refined.
Download or read book CCS Guidelines written by Sarah M. Forbes and published by . This book was released on 2008 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Carbon Dioxide Capture and Storage (CCS) Guidelines effort was initiated to develop a set of preliminary guidelines and recommendations for the deployment of CCS technologies in the United States, to ensure that CCS projects are conducted safely and effectively. The guidelines are written for those who may be involved in decisions on a proposed project: the developers, regulators, financiers, insurers, project operators, and policy makers. These guidelines are intended to guide full-scale demonstration of and build public confidence in CCS technologies by informing how projects should be conducted.
Download or read book How to Store CO2 Underground Insights from early mover CCS Projects written by Philip Ringrose and published by Springer Nature. This book was released on 2020-01-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the scientific basis and engineering practice for CO2 storage, covering topics such as storage capacity, trapping mechanisms, CO2 phase behaviour and flow dynamics, engineering and geomechanics of geological storage, injection well design, and geophysical and geochemical monitoring. It also provides numerous examples from the early mover CCS projects, notably Sleipner and Snøhvit offshore Norway, as well as other pioneering CO2 storage projects.
Download or read book Streamline Simulation written by Akhil Datta-Gupta and published by . This book was released on 2007 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Streamline-Simulation emphasizes the unique features of streamline technology that in many ways complement conventional finite-difference simulation. It fills gaps in the mathematical foundations.
Download or read book Subsurface Fluid Flow and Imaging written by Donald Wyman Vasco and published by Cambridge University Press. This book was released on 2016-07-21 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unified framework for subsurface imaging based upon asymptotic and trajectory-based methods, with online software applications.
Download or read book Petroleum Related Rock Mechanics written by Erling Fjær and published by Elsevier. This book was released on 2008-01-04 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers and geologists in the petroleum industry will find Petroleum Related Rock Mechanics, 2e, a powerful resource in providing a basis of rock mechanical knowledge - a knowledge which can greatly assist in the understanding of field behavior, design of test programs and the design of field operations. Not only does this text give an introduction to applications of rock mechanics within the petroleum industry, it has a strong focus on basics, drilling, production and reservoir engineering. Assessment of rock mechanical parameters is covered in depth, as is acoustic wave propagation in rocks, with possible link to 4D seismics as well as log interpretation. - Learn the basic principles behind rock mechanics from leading academic and industry experts - Quick reference and guide for engineers and geologists working in the field - Keep informed and up to date on all the latest methods and fundamental concepts
Download or read book Geologic Modeling and Data Assimilation for CO2 Sequestration in Point Bar Reservoirs written by Ismael Dawuda and published by . This book was released on 2024 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The target reservoirs in many CO2 sequestration projects exhibit point bar geology characterized by the presence of shale drapes that can act as barriers to prevent the leakage of CO2. However, these shale drapes can also act as flow barriers and impede the displacement of CO2 in such reservoirs and restrict the storage volume. Therefore, developing a framework for modeling point bars and their associated heterogeneities is important. Yet, for the point bar model to be geologically realistic and reliable for predicting the displacement of the CO2 plume during sequestration, it should be calibrated by assimilating historical production/injection data to reduce the uncertainties associated with predictions of flow performance. Even so, due to the complex geologic heterogeneity exhibited by point bars, there is likely to be significant residual uncertainty even after assimilating historical flow performance related data. The calibrated models are further refined by assimilating timelapse seismic data in a Bayesian model selection workflow to sub-select the most-probable models that best reflect the reservoir characteristics closely. Given the interlinked nature of these modeling efforts, this dissertation proposes an integrated modeling workflow to accomplish the research objectives. The workflow begins with detailed geometric and geologic modeling of point bar reservoirs, and subsequent calibration of the models by assimilating CO2 injection data and time-lapse seismic information. A stochastic approach that considers the processes leading to the deposition of the point bar is proposed to model the point bar and its associated heterogeneities. The method uses geometric functions to model the areal and vertical dimensions of the point bar reservoir. Preserving the curvilinear continuity of the point bar geometry is very difficult and this has been accomplished by implementing a gridding scheme that accounts for the aerial geometry of the accretion surfaces as well as the sigmoidal geometry of the inclined heterolithic stratifications. Also, the spatial continuity of the unique heterogeneities that characterize point bar reservoirs was honored by incorporating a grid transformation scheme in the geostatistical simulation of the reservoir properties. The residual uncertainty associated with the geological modeling process was represented by generating several realizations of point bar reservoir models. The model calibration workflow seeks to reduce the uncertainty associated with the prediction of reservoir properties over the ensemble of point bar reservoir models. The workflow developed in this research addresses two challenges common to many history matching techniques: (1) failure to account for uncertainties in reservoir geometry despite the influence that the reservoir architecture can have on reservoir response variables, (2) inability to handle the non-Gaussian relationship between the primary state variables and secondary variables for reservoirs with complex heterogeneities (such as point bars) within current ensemble-based schemes. These challenges were addressed in a hierarchical, two-step approach using ensemble-based data assimilation techniques. In step 1, we tackled the first challenge by implementing ensemble Kalman Filter (EnKF) to update the geometry of the point bar reservoir. For step 2, we used the updated reservoir geometry determined in step 1 to tackle the second problem by implementing a modified Indicator-based Data Assimilation (InDA) to update the permeability distribution in the point bar system. To accommodate the curvilinear geometry of the reservoir implemented while still implementing InDA in a Cartesian framework, we incorporated a grid transformation scheme. This two-step model calibration approach reduces but does not eliminate the uncertainty associated with the models for the point bar reservoir. Further reduction in uncertainty is possible by integrating additional data in the form of time-lapse information. In this research, we implement a Bayesian model selection workflow to further reduce the uncertainty associated with the models for the point bar reservoir. The model selection algorithm is used to create a posterior set of models that reflect the time-lapse seismic information that may be available for the field site. The algorithm proceeds by: (1) computing discrete Fréchet distances to quantify the similarity in post-injection seismic responses obtained from a large prior ensemble of models, (2) combining multidimensional scaling with k-means clustering, to partition the models into subgroups based on their seismic responses, (3) performing Bayesian computations in the reduced model space to select the subgroup of models that yield response closest to the observed seismic information, and (4) iteratively sampling the posterior models, to further refine the selection of the model clusters. The applicability of the entire integrated workflow to a real field scenario is demonstrated, using the CO2 injection and timelapse seismic dataset for the Cranfield reservoir in Mississippi. The final ensemble of selected models can be used to assess the uncertainty in predicting CO2 storage capacity and the future displacement of CO2 plume.
Download or read book Water Security in the Mediterranean Region written by Andrea Scozzari and published by Springer. This book was released on 2011-09-08 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The role of water in our communities, from local to regional and right up to global levels, poses a series of key questions about climate change, about the anthropogenic impact on the environment, and about all the interconnected actions and events that affect the availability and quality of the resource. All these questions share a common demand for more scientific knowledge and information. In this particular context the disciplinary boundaries are fading, and there is a growing need to create broader connections and wider collaborative interdisciplinary groups, aimed at building an integrated knowledge-base to serve not only stakeholders but also the whole of society. Only in this way can we hope to respond effectively to the challenges and changing dynamics of human-hydrologic systems. Following this concept, contributors from multiple disciplinary backgrounds, such as Law Studies, Hydrogeology, Monitoring and Information Technologies, Geophysics, Geochemistry, Environmental Sciences, Systems Engineering, Economics and Social Studies, joined forces and interacted in this workshop. The present book reports the proceedings of this three-day ARW (Advanced Research Workshop), and explores different aspects of the environmental security assessment process, focusing on the assessment, monitoring and management of water resources, and giving an overview of the related scientific knowledge.
Download or read book Practical Applications of Time lapse Seismic Data written by David H. Johnston and published by SEG Books. This book was released on 2013 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time-lapse (4D) seismic technology is a key enabler for improved hydrocarbon recovery and more cost-effective field operations. This book shows how 4D data are used for reservoir surveillance, add value to reservoir management, and provide valuable insight on dynamic reservoir properties such as fluid saturation, pressure, and temperature.
Download or read book Sandstone Petroleum Reservoirs written by John H. Barwis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sandstone Petroleum Reservoirs presents an integrated, multidisciplinary approach to the geology of sandstone oil and gas reservoirs. Twenty-two case studies involving a variety of depositional settings, tectonic provinces, and burial/diagenetic histories emphasize depositional controls on reservoir architecture, petrophysical properties, and production performance. An introductory section provides perspective to the nature of reservoir characterization and highlights the important questions that future studies need to address. A "reservoir summary" following each case study aids the reader in gaining quick access to the main characteristics of each reservoir. This casebook is heavily illustrated, and most data have not been previously published. The intended audience comprises a broad range of practicing earth scientists, including petroleum geologists, geophysicists, and engineers. Readers will value the integration of geological versus engineering interests provided here, and will be enabled to improve exploration and production results.
Download or read book Geological Storage of Carbon Dioxide CO2 written by J Gluyas and published by Elsevier. This book was released on 2013-11-23 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geological storage and sequestration of carbon dioxide, in saline aquifers, depleted oil and gas fields or unminable coal seams, represents one of the most important processes for reducing humankind's emissions of greenhouse gases. Geological storage of carbon dioxide (CO2) reviews the techniques and wider implications of carbon dioxide capture and storage (CCS).Part one provides an overview of the fundamentals of the geological storage of CO2. Chapters discuss anthropogenic climate change and the role of CCS, the modelling of storage capacity, injectivity, migration and trapping of CO2, the monitoring of geological storage of CO2, and the role of pressure in CCS. Chapters in part two move on to explore the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and public engagement in projects, and the legal framework for CCS. Finally, part three focuses on a variety of different projects and includes case studies of offshore CO2 storage at Sleipner natural gas field beneath the North Sea, the CO2CRC Otway Project in Australia, on-shore CO2 storage at the Ketzin pilot site in Germany, and the K12-B CO2 injection project in the Netherlands.Geological storage of carbon dioxide (CO2) is a comprehensive resource for geoscientists and geotechnical engineers and academics and researches interested in the field. - Reviews the techniques and wider implications of carbon dioxide capture and storage (CCS) - An overview of the fundamentals of the geological storage of CO2 discussing the modelling of storage capacity, injectivity, migration and trapping of CO2 among other subjects - Explores the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and the legal framework for CCS
Download or read book The Rock Physics Handbook written by Gary Mavko and published by Cambridge University Press. This book was released on 2020-01-09 with total page 741 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brings together widely scattered theoretical and laboratory rock physics relations critical for modelling and interpretation of geophysical data.
Download or read book Carbon Capture Utilization and Sequestration written by Ramesh K. Agarwal and published by BoD – Books on Demand. This book was released on 2018-09-12 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is divided in two sections. Several chapters in the first section provide a state-of-the-art review of various carbon sinks for CO2 sequestration such as soil and oceans. Other chapters discuss the carbon sequestration achieved by storage in kerogen nanopores, CO2 miscible flooding and generation of energy efficient solvents for postcombustion CO2 capture. The chapters in the second section focus on monitoring and tracking of CO2 migration in various types of storage sites, as well as important physical parameters relevant to sequestration. Both researchers and students should find the material useful in their work.
Download or read book Seismic Wave Theory written by Edward S. Krebes and published by Cambridge University Press. This book was released on 2019-03-28 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise textbook on seismic wave theory, with detailed derivations of formulas, clear explanations of topics, exercises, and selected answers.