EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Molecular Theory of Lithography

Download or read book Molecular Theory of Lithography written by Uzodinma Okoroanyanwu and published by . This book was released on 2015 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a unified exposition of the molecular theory that underlies lithographic imaging. It explains with physical-chemical theories the molecular-level interactions involved in lithographic imaging. It also provides the theoretical basis for the main unit operations of the advanced lithographic process, as well as for advanced lithographic imaging mechanisms, including photochemical and radiochemical, imprint, and directed block copolymer self-assembly imaging mechanisms. The book is intended for student and professionals whose knowledge of lithography extends to the chemistry and physics underlying its various forms. A familiarity with chemical kinetics, thermodynamics, statistical mechanics, and quantum mechanics will be helpful, as will be familiarity with elementary concepts in physics such as energy, force, electrostatics, electrodynamics, and optics.

Book Chemistry and Lithography

Download or read book Chemistry and Lithography written by Uzodinma Okoroanyanwu and published by SPIE Press. This book was released on 2011-03-08 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemistry and Lithography provides a comprehensive treatment of the chemical phenomena in lithography in a manner that is accessible to a wide readership. The book presents topics on the optical and charged particle physics practiced in lithography, with a broader view of how the marriage between chemistry and optics has made possible the print and electronic revolutions of the digital age. The related aspects of lithography are thematically presented to convey a unified view of the developments in the field over time, from the very first recorded reflections on the nature of matter to the latest developments at the frontiers of lithography science and technology. Part I presents several important chemical and physical principles involved in the invention and evolution of lithography. Part II covers the processes for the synthesis, manufacture, usage, and handling of lithographic chemicals and materials. Part III investigates several important chemical and physical principles involved in the practice of lithography. Chemistry and Lithography is a useful reference for anyone working in the semiconductor industry.

Book Fundamental Principles of Optical Lithography

Download or read book Fundamental Principles of Optical Lithography written by Chris Mack and published by John Wiley & Sons. This book was released on 2011-08-10 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fabrication of an integrated circuit requires a variety of physical and chemical processes to be performed on a semiconductor substrate. In general, these processes fall into three categories: film deposition, patterning, and semiconductor doping. Films of both conductors and insulators are used to connect and isolate transistors and their components. By creating structures of these various components millions of transistors can be built and wired together to form the complex circuitry of modern microelectronic devices. Fundamental to all of these processes is lithography, ie, the formation of three-dimensional relief images on the substrate for subsequent transfer of the pattern to the substrate. This book presents a complete theoretical and practical treatment of the topic of lithography for both students and researchers. It comprises ten detailed chapters plus three appendices with problems provided at the end of each chapter. Additional Information: Visiting http://www.lithoguru.com/textbook/index.html enhances the reader's understanding as the website supplies information on how you can download a free laboratory manual, Optical Lithography Modelling with MATLAB®, to accompany the textbook. You can also contact the author and find help for instructors.

Book Materials and Processes for Next Generation Lithography

Download or read book Materials and Processes for Next Generation Lithography written by and published by Elsevier. This book was released on 2016-11-08 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the requirements of the semiconductor industry have become more demanding in terms of resolution and speed it has been necessary to push photoresist materials far beyond the capabilities previously envisioned. Currently there is significant worldwide research effort in to so called Next Generation Lithography techniques such as EUV lithography and multibeam electron beam lithography. These developments in both the industrial and the academic lithography arenas have led to the proliferation of numerous novel approaches to resist chemistry and ingenious extensions of traditional photopolymers. Currently most texts in this area focus on either lithography with perhaps one or two chapters on resists, or on traditional resist materials with relatively little consideration of new approaches. This book therefore aims to bring together the worlds foremost resist development scientists from the various community to produce in one place a definitive description of the many approaches to lithography fabrication. Assembles up-to-date information from the world’s premier resist chemists and technique development lithographers on the properties and capabilities of the wide range of resist materials currently under investigation Includes information on processing and metrology techniques Brings together multiple approaches to litho pattern recording from academia and industry in one place

Book Molicular Theory of Lithography

    Book Details:
  • Author : Harry Bannon
  • Publisher : Createspace Independent Publishing Platform
  • Release : 2018-07-25
  • ISBN : 9781723588525
  • Pages : 432 pages

Download or read book Molicular Theory of Lithography written by Harry Bannon and published by Createspace Independent Publishing Platform. This book was released on 2018-07-25 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is supposed for college student and experts whose knowledge of lithography reaches the chemical make up and science actual its various types. A understanding with substance kinetics, thermodynamics, mathematical techniques, and huge techniques will be helpful, as will be understanding with primary ideas in science such as energy, power, electrostatics, electrodynamics, and optics. It describes with physical-chemical ideas the molecular-level communications involved in lithographic picture. It also provides the theoretical basis for the main unit functions of the innovative lithographic process, as well as for innovative lithographic picture systems, such as photochemical and radiochemical, mark, and instructed prevent copolymer self-assembly picture systems.

Book Microlithography

Download or read book Microlithography written by Bruce W. Smith and published by CRC Press. This book was released on 2020-05-01 with total page 838 pages. Available in PDF, EPUB and Kindle. Book excerpt: The completely revised Third Edition to the bestselling Microlithography: Science and Technology provides a balanced treatment of theoretical and operational considerations, from fundamental principles to advanced topics of nanoscale lithography. The book is divided into chapters covering all important aspects related to the imaging, materials, and processes that have been necessary to drive semiconductor lithography toward nanometer-scale generations. Renowned experts from the world’s leading academic and industrial organizations have provided in-depth coverage of the technologies involved in optical, deep-ultraviolet (DUV), immersion, multiple patterning, extreme ultraviolet (EUV), maskless, nanoimprint, and directed self-assembly lithography, together with comprehensive descriptions of the advanced materials and processes involved. New in the Third Edition In addition to the full revision of existing chapters, this new Third Edition features coverage of the technologies that have emerged over the past several years, including multiple patterning lithography, design for manufacturing, design process technology co-optimization, maskless lithography, and directed self-assembly. New advances in lithography modeling are covered as well as fully updated information detailing the new technologies, systems, materials, and processes for optical UV, DUV, immersion, and EUV lithography. The Third Edition of Microlithography: Science and Technology authoritatively covers the science and engineering involved in the latest generations of microlithography and looks ahead to the future systems and technologies that will bring the next generations to fruition. Loaded with illustrations, equations, tables, and time-saving references to the most current technology, this book is the most comprehensive and reliable source for anyone, from student to seasoned professional, looking to better understand the complex world of microlithography science and technology.

Book Introduction to Microlithography

Download or read book Introduction to Microlithography written by L. F. Thompson and published by Academic. This book was released on 1994 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews the theory, materials, and processes used in the lithographic process by which circuit elements are fabricated (it is these elements' decreasing size that has made possible the miniaturization of electronic devices). After a brief historical introduction, four major topics are discussed: the physics of the lithographic process, organic resist materials, resist processing, and plasma etching. The new edition reflects the many changes that have occurred since the 1983 publication of this tutorial/reference. Annotation copyright by Book News, Inc., Portland, OR

Book Tip Based Nanofabrication

Download or read book Tip Based Nanofabrication written by Ampere A. Tseng and published by Springer Science & Business Media. This book was released on 2011-07-25 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanofabrication is critical to the realization of potential benefits in the field of electronics, bioengineering and material science. One enabling technology in nanofabrication is Tip-Based Nanofabrication, which makes use of functionalized micro-cantilevers with nanoscale tips. Tip-Based Nanofabrication: Fundamentals and Applications discusses the development of cantilevered nanotips and how they evolved from scanning probe microscopy and are able to manipulate environments at nanoscale on substrates generating different nanoscale patterns and structures. Also covered are the advantages of ultra-high resolution capability, how to use tip based nanofabrication technology as a tool in the manufacturing of nanoscale structures, single-probe tip technologies, multiple-probe tip methodology, 3-D modeling using tip based nanofabrication and the latest in imaging technology.

Book Microlithography Molecular Imprinting

Download or read book Microlithography Molecular Imprinting written by and published by Springer Science & Business Media. This book was released on 2005-02-18 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. J.D. Marty, M. Mauzac: Molecular Imprinting: State of the Art and Perspectives.- 2. H. Ito: Chemical Amplification Resists for Microlithography

Book The Physics of Submicron Lithography

Download or read book The Physics of Submicron Lithography written by Kamil A. Valiev and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the physics of electron-beam, ion-beam, optical, and x-ray lithography. The need for this book results from the following considerations. The astonishing achievements in microelectronics are in large part connected with successfully applying the relatively new technology of processing (changing the prop erties of) a material into a device whose component dimensions are submicron, called photolithography. In this method the device is imaged as a pattern on a metal film that has been deposited onto a transparent substrate and by means of a broad stream of light is transferred to a semiconductor wafer within which the physical structure of the devices and the integrated circuit connections are formed layer by layer. The smallest dimensions of the device components are limited by the diffraction of the light when the pattern is transferred and are approximately the same as the wavelength of the light. Photolithography by light having a wavelength of A ~ 0.4 flm has made it possible to serially produce integrated circuits having devices whose minimal size is 2-3 flm in the 4 pattern and having 10-105 transistors per circuit.

Book Ultrafast Laser Nanostructuring

Download or read book Ultrafast Laser Nanostructuring written by Razvan Stoian and published by Springer Nature. This book was released on 2023-04-06 with total page 1243 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing together contributions from leading experts in the field, this book reviews laser processing concepts that allow the structuring of material beyond optical limits, and methods that facilitate direct observation of the underlying mechanisms by exploring direct structuring and self-organization phenomena. The capacity to nanostructure material using ultrafast lasers lays the groundwork for the next generation of flexible and precise material processing tools. Rapid access to scales of 100 nm and below in two and three dimensions becomes a factor of paramount importance to engineer materials and to design innovative functions. To reflect the dynamic nature of the field at all levels from basic science to applications, the book is divided into three parts, Fundamental Processes, Concepts of Extreme Nanostructuring, and Applications, each of which is comprehensively covered. This book will be a useful resource for graduate students and researchers in laser processing, materials engineering, and nanoscience.

Book Molecular Scale Electronics

Download or read book Molecular Scale Electronics written by Xuefeng Guo and published by John Wiley & Sons. This book was released on 2020-07-02 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides in-depth knowledge on molecular electronics and emphasizes the techniques for designing molecular junctions with controlled functionalities This comprehensive book covers the major advances with the most general applicability in the field of molecular electronic devices. It emphasizes new insights into the development of efficient platform methodologies for building such reliable devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. It also helps to develop an understanding of the device fabrication processes and the characteristics of the resulting electrode-molecule interface. Beginning with an introduction to the subject, Molecular-Scale Electronics: Concept, Fabrication and Applications offers full chapter coverage on topics such as: Metal Electrodes for Molecular Electronics; Carbon Electrodes for Molecular Electronics; Other Electrodes for Molecular Electronics; Novel Phenomena in Single-Molecule Junctions; and Supramolecular Interactions in Single-Molecule Junctions. Other chapters discuss Theoretical Aspects for Electron Transport through Molecular Junctions; Characterization Techniques for Molecular Electronics; and Integrating Molecular Functionalities into Electrical Circuits. The book finishes with a summary of the primary challenges facing the field and offers an outlook at its future. * Summarizes a number of different approaches for forming molecular-scale junctions and discusses various experimental techniques for examining these nanoscale circuits in detail * Gives overview of characterization techniques and theoretical simulations for molecular electronics * Highlights the major contributions and new concepts of integrating molecular functionalities into electrical circuits * Provides a critical discussion of limitations and main challenges that still exist for the development of molecular electronics * Suited for readers studying or doing research in the broad fields of Nano/molecular electronics and other device-related fields Molecular-Scale Electronics is an excellent book for materials scientists, electrochemists, electronics engineers, physical chemists, polymer chemists, and solid-state chemists. It will also benefit physicists, semiconductor physicists, engineering scientists, and surface chemists.

Book Molecular Plasmonics

Download or read book Molecular Plasmonics written by Volodymyr I. Chegel and published by CRC Press. This book was released on 2020-11-18 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the results of studies of molecules and molecular complexes using techniques based on surface plasmon resonance (SPR) in a novel scientific direction called molecular plasmonics. It presents the current state of investigations in the field of molecular plasmonics and discusses its two main physical phenomena: surface plasmon–polariton resonance (SPPR) and localized SPR (LSPR). Among the mathematical methods for the calculation of plasmonic systems response, the book emphasizes models based on the transfer-matrix method, Green function formalism, Mie scattering theory, and numerical methods. It considers the possibilities of the SPPR technique for registering conformational changes, surface plasmon–mediated photopolymerization, electrochemical processes, as well as reversible optoelectronic and physicochemical properties during investigation of molecular systems. It describes applications of the LSPR method, including creation of metamaterials, surface-enhanced fluorescence, and bio- and chemosensing using noble metal nanoparticles in colloidal, array, and composite polymeric film formats. It also highlights the development and applications of plasmonic nanochips.

Book Recent Advances in Molecular Lithography

Download or read book Recent Advances in Molecular Lithography written by and published by . This book was released on 2007 with total page 9 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optically Induced Nanostructures

Download or read book Optically Induced Nanostructures written by Karsten König and published by Walter de Gruyter GmbH & Co KG. This book was released on 2015-05-19 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructuring of materials is a task at the heart of many modern disciplines in mechanical engineering, as well as optics, electronics, and the life sciences. This book includes an introduction to the relevant nonlinear optical processes associated with very short laser pulses for the generation of structures far below the classical optical diffraction limit of about 200 nanometers as well as coverage of state-of-the-art technical and biomedical applications. These applications include silicon and glass wafer processing, production of nanowires, laser transfection and cell reprogramming, optical cleaning, surface treatments of implants, nanowires, 3D nanoprinting, STED lithography, friction modification, and integrated optics. The book highlights also the use of modern femtosecond laser microscopes and nanoscopes as novel nanoprocessing tools.

Book Semiconductor Lithography

Download or read book Semiconductor Lithography written by Wayne M. Moreau and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 937 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor lithography is one of the key steps in the manufacturing of integrated silicon-based circuits. In fabricating a semiconductor device such as a transistor, a series of hot processes consisting of vacuum film deposition, oxidations, and dopant implantation are all patterned into microscopic circuits by the wet processes of lithography. Lithography, as adopted by the semiconductor industry, is the process of drawing or printing the pattern of an integrated circuit in a resist material. The pattern is formed and overlayed to a previous circuit layer as many as 30 times in the manufacture of logic and memory devices. With the resist pattern acting as a mask, a permanent device structure is formed by subtractive (removal) etching or by additive deposition of metals or insulators. Each process step in lithography uses inorganic or organic materials to physically transform semiconductors of silicon, insulators of oxides, nitrides, and organic polymers, and metals, into useful electronic devices. All forms of electromagnetic radiation are used in the processing. Lithography is a mUltidisciplinary science of materials, processes, and equipment, interacting to produce three-dimensional structures. Many aspects of chemistry, electrical engineering, materials science, and physics are involved. The purpose of this book is to bring together the work of many scientists and engineers over the last 10 years and focus upon the basic resist materials, the lithographic processes, and the fundamental principles behind each lithographic process.

Book Atomic and Molecular Beams

    Book Details:
  • Author : Roger Campargue
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642568009
  • Pages : 1013 pages

Download or read book Atomic and Molecular Beams written by Roger Campargue and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 1013 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title covers the state of the art in this field both theoretically and experimentally. With contributions from leading researchers including several Nobel laureates, it represents a long-lasting source of reference on all aspects of fundamental research into or using atomic and molecular beams.