EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Molecular Simulation on Cementitious Materials  From Computational Chemistry Method to Application

Download or read book Molecular Simulation on Cementitious Materials From Computational Chemistry Method to Application written by Dongshuai Hou and published by Frontiers Media SA. This book was released on 2022-02-09 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Simulation on Cement Based Materials

Download or read book Molecular Simulation on Cement Based Materials written by Dongshuai Hou and published by Springer Nature. This book was released on 2019-09-26 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a number of studies on the molecular dynamics of cement-based materials. It introduces a practical molecular model of cement-hydrate, delineates the relationship between molecular structure and nanoscale properties, reveals the transport mechanism of cement-hydrate, and provides useful methods for material design. Based on the molecular model presented here, the book subsequently sheds light on nanotechnology applications in the design of construction and building materials. As such, it offers a valuable asset for researchers, scientists, and engineers in the field of construction and building materials.

Book Applying Molecular and Materials Modeling

Download or read book Applying Molecular and Materials Modeling written by Phillip Westmoreland and published by Springer Science & Business Media. This book was released on 2002-10-31 with total page 58 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational molecular and materials modeling has emerged to deliver solid technological impacts in the chemical, pharmaceutical, and materials industries. It is not the all-predictive science fiction that discouraged early adopters in the 1980s. Rather, it is proving a valuable aid to designing and developing new products and processes. People create, not computers, and these tools give them qualitative relations and quantitative properties that they need to make creative decisions. With detailed analysis and examples from around the world, Applying Molecular and Materials Modeling describes the science, applications, and infrastructures that have proven successful. Computational quantum chemistry, molecular simulations, informatics, desktop graphics, and high-performance computing all play important roles. At the same time, the best technology requires the right practitioners, the right organizational structures, and - most of all - a clearly understood blend of imagination and realism that propels technological advances. This book is itself a powerful tool to help scientists, engineers, and managers understand and take advantage of these advances.

Book Computational Materials Chemistry

Download or read book Computational Materials Chemistry written by L.A. Curtiss and published by Springer Science & Business Media. This book was released on 2006-01-16 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: As a result of the advancements in algorithms and the huge increase in speed of computers over the past decade, electronic structure calculations have evolved into a valuable tool for characterizing surface species and for elucidating the pathways for their formation and reactivity. It is also now possible to calculate, including electric field effects, STM images for surface structures. To date the calculation of such images has been dominated by density functional methods, primarily because the computational cost of - curate wave-function based calculations using either realistic cluster or slab models would be prohibitive. DFT calculations have proven especially valuable for elucidating chemical processes on silicon and other semiconductor surfaces. However, it is also clear that some of the systems to which DFT methods have been applied have large non-dynamical correlation effects, which may not be properly handled by the current generation of Kohn-Sham-based density functionals. For example, our CASSCF calculations on the Si(001)/acetylene system reveal that at some geometries there is extensive 86 configuration mixing. This, in turn, could signal problems for DFT cal- lations on these systems. Some of these problem systems can be addressed using ONIOM or other “layering” methods, treating the primary region of interest with a CASMP2 or other multireference-based method, and treating the secondary region by a lower level of electronic structure theory or by use of a molecular mechanics method. ACKNOWLEDGEMENTS We wish to thank H. Jónsson, C. Sosa, D. Sorescu, P. Nachtigall, and T. -C.

Book Molecular Materials with Specific Interactions   Modeling and Design

Download or read book Molecular Materials with Specific Interactions Modeling and Design written by W. Andrzej Sokalski and published by Springer Science & Business Media. This book was released on 2007-05-06 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design of new molecular materials is emerging as a new interdisciplinary research field. Corresponding reports are scattered in literature, and this book constitutes one of the first attempts to overview ongoing research efforts. It provides basic information, as well as the details of theory and examples of its application, to experimentalists and theoreticians interested in modeling molecular properties and putting into practice rational design of new materials.

Book Smart Nanoconcretes and Cement Based Materials

Download or read book Smart Nanoconcretes and Cement Based Materials written by Mohd Shahir Liew and published by Elsevier. This book was released on 2019-11-16 with total page 726 pages. Available in PDF, EPUB and Kindle. Book excerpt: Smart Nanoconcretes and Cement-Based Materials: Properties, Modelling and Applications explores the fundamental concepts and applications of smart nanoconcretes with self-healing, self-cleaning, photocatalytic, antibacterial, piezoelectrical, heating and conducting properties and how they are used in modern high-rise buildings, hydraulic engineering, highways, tunnels and bridges. This book is an important reference source for materials scientists and civil engineers who are looking to enhance the properties of smart nanomaterials to create stronger, more durable concrete. Explores the mechanisms through which active agents are released from nanocontainers inside concrete Shows how embedded smart nanosensors, including carbon cement-based smart sensors and micro/nano strain-sensors, are used to increase concrete performance Discusses the major challenges of integrating smart nanomaterials into concrete composites

Book Applied Computational Materials Modeling

Download or read book Applied Computational Materials Modeling written by Guillermo Bozzolo and published by Springer Science & Business Media. This book was released on 2007-12-19 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scope of this book is to identify and emphasize the successful link between computational materials modeling as a simulation and design tool and its synergistic application to experimental research and alloy development. The book provides a more balanced perspective of the role that computational modeling can play in every day research and development efforts. Each chapter describes one or more particular computational tool and how they are best used.

Book Molecular Modeling Techniques In Material Sciences

Download or read book Molecular Modeling Techniques In Material Sciences written by Jörg-Rüdiger Hill and published by CRC Press. This book was released on 2005-03-30 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasingly useful in materials research and development, molecular modeling is a method that combines computational chemistry techniques with graphics visualization for simulating and predicting the structure, chemical processes, and properties of materials. Molecular Modeling Techniques in Materials Science explores the impact of using molecular modeling for various simulations in industrial settings. It provides an overview of commonly used methods in atomistic simulation of a broad range of materials, including oxides, superconductors, semiconductors, zeolites, glass, and nanomaterials. The book presents information on how to handle different materials and how to choose an appropriate modeling method or combination of techniques to better predict material behavior and pinpoint effective solutions. Discussing the advantages and disadvantages of various approaches, the authors develop a framework for identifying objectives, defining design parameters, measuring accuracy/accounting for error, validating and assessing various data collected, supporting software needs, and other requirements for planning a modeling project. The book integrates the remarkable developments in computation, such as advanced graphics and faster, cheaper workstations and PCs with new advances in theoretical techniques and numerical algorithms. Molecular Modeling Techniques in Materials Science presents the background and tools for chemists and physicists to perform in-silico experiments to understand relationships between the properties of materials and the underlying atomic structure. These insights result in more accurate data for designing application-specific materials that withstand real process conditions, including hot temperatures and high pressures.

Book Computational Materials and Biological Sciences

Download or read book Computational Materials and Biological Sciences written by Kholmirzo T. Kholmurodov and published by . This book was released on 2015 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, original papers have been collected to demonstrate the efficient use of computer molecular dynamics simulation methods for the studying of nanoscale phenomena in the materials and life sciences. This book discusses modern molecular simulation methods for the study of molecular shape and properties in protein and polymer engineering, drugs and materials design, structure-function relationships, and related issues. This book contains the Proceedings of the MSSMBS-2014 and DSCMBS-2014 International Workshops which have been organized by the Joint Institute for Nuclear Research, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and S.U. Umarov Physical-Technical Institute of the Academy of Sciences of the Republic of Tajikistan. The research topics discussed in the MSSMBS'14 & DSCMBS'14 International Workshops are as follows: computer molecular simulation methods and approaches; molecular dynamics and Monte-Carlo techniques; modeling of biological molecules; physical and biochemical systems; material fabrication and design; drug design in medicine; computational and computing physics, chemistry, biology and medicine; GPU accelerated molecular dynamics and related techniques.

Book Computational Chemistry Methodology in Structural Biology and Materials Sciences

Download or read book Computational Chemistry Methodology in Structural Biology and Materials Sciences written by Tanmoy Chakraborty and published by CRC Press. This book was released on 2017-10-03 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Chemistry Methodology in Structural Biology and Materials Sciences provides a selection of new research in theoretical and experimental chemistry, focusing on topics in the materials science and biological activity. Part 1, on Computational Chemistry Methodology in Biological Activity, of the book emphasizes presents new developments in the domain of theoretical and computational chemistry and its applications to bioactive molecules. It looks at various aspects of density functional theory and other issues. Part 2, on Computational Chemistry Methodology in Materials Science, presents informative new research on computational chemistry as applied to materials science. The wide range of topics regarding the application of theoretical and experimental chemistry and materials science and biological domain will be valuable in the context of addressing contemporary research problems.

Book Nanoscience and Nanoengineering

Download or read book Nanoscience and Nanoengineering written by Ajit D. Kelkar and published by CRC Press. This book was released on 2014-05-28 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reflecting the breadth of the field from research to manufacturing, Nanoscience and Nanoengineering: Advances and Applications delivers an in-depth survey of emerging, high-impact nanotechnologies. Written by a multidisciplinary team of scientists and engineers and edited by prestigious faculty of the Joint School of Nanoscience and Nanoengineering

Book Molecular Modelling with Materials Studio

Download or read book Molecular Modelling with Materials Studio written by Ruth H. Howard and published by CRC Press. This book was released on 2016-07-26 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasingly useful in materials research and development, molecular modelling is a method that combines computational chemistry techniques with graphics visualization for simulating and predicting the structure, chemical processes, and properties of materials. This book will help students and researchers alike in their application of modelling techniques and tools in the Materials Studio software suite adopted widely by academia and industry for their molecular modelling applications. It the last five years, over 10,000 scientific and peer-reviewed publications referenced the Materials Studio program.

Book Innovative Developments of Advanced Multifunctional Nanocomposites in Civil and Structural Engineering

Download or read book Innovative Developments of Advanced Multifunctional Nanocomposites in Civil and Structural Engineering written by Kenneth Loh and published by Woodhead Publishing. This book was released on 2016-02-03 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Innovative Developments of Advanced Multifunctional Nanocomposites in Civil and Structural Engineering focuses on nanotechnology, the innovation and control of materials at 100 nm or smaller length scales, and how they have revolutionized almost all of the various disciplines of science and engineering study. In particular, advances in synthesizing, imaging, and manipulating materials at the nano-scale have provided engineers with a broader array of materials and tools for creating high-performance devices. Nanomaterials possess drastically different properties than those of their bulk counterparts mainly because of their high surface-to-mass ratios and high surface energies/reactivity. For instance, carbon nanotubes have been shown to possess impressive mechanical strength, stiffness, and electrical conductivity superior to that of bulk carbon. Whilst nanotechnology has become deeply rooted in electrical, chemical, and materials engineering disciplines, its proliferation into civil engineering did not begin until fairly recently. This book covers that proliferation and the main challenges associated with the integration of nanomaterials and nano-scale design principles into civil and structural engineering. Examines nanotechnology and its application to not only structural engineering, but also transportation, new infrastructure materials, and the applications of nanotechnology to existing structural systems Focuses on how nanomaterials can provide enhanced sensing capabilities and mechanical reinforcement of the original structural material Analyzes experimental and computational work carried out by world-renowned researchers

Book Computational Modelling of Concrete Structures

Download or read book Computational Modelling of Concrete Structures written by Günther Meschke and published by CRC Press. This book was released on 2018-01-31 with total page 1034 pages. Available in PDF, EPUB and Kindle. Book excerpt: The EURO-C conference series (Split 1984, Zell am See 1990, Innsbruck 1994, Badgastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018) brings together researchers and practising engineers concerned with theoretical, algorithmic and validation aspects associated with computational simulations of concrete and concrete structures. Computational Modelling of Concrete Structures reviews and discusses research advancements and the applicability and robustness of methods and models for reliable analysis of complex concrete, reinforced concrete and pre-stressed concrete structures in engineering practice. The contributions cover both computational mechanics and computational modelling aspects of the analysis and design of concrete and concrete structures: Multi-scale cement and concrete research: experiments and modelling Aging concrete: from very early ages to decades-long durability Advances in material modelling of plain concrete Analysis of reinforced concrete structures Steel-concrete interaction, fibre-reinforced concrete, and masonry Dynamic behaviour: from seismic retrofit to impact simulation Computational Modelling of Concrete Structures is of special interest to academics and researchers in computational concrete mechanics, as well as industry experts in complex nonlinear simulations of concrete structures.

Book Low Carbon Stabilization and Solidification of Hazardous Wastes

Download or read book Low Carbon Stabilization and Solidification of Hazardous Wastes written by Daniel C.W. Tsang and published by Elsevier. This book was released on 2021-09-24 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low Carbon Stabilization and Solidification of Hazardous Wastes details sustainable and low-carbon treatments for addressing environmental pollution problems, critically reviewing low-carbon stabilization/solidification technologies. This book presents the latest state-of-the-art knowledge of low-carbon stabilization/solidification technologies to provide cost-effective sustainable solutions for real-life environmental problems related to hazardous wastes including contaminated sediments. As stabilization/solidification is one of the most widely used waste remediation methods for its versatility, fast implementation and final treatment of hazardous waste treatment, it is imperative that those working in this field follow the most recent developments. Low Carbon Stabilization and Solidification of Hazardous Wastes is a necessary read for academics, postgraduates, researchers and engineers in the field of environmental science and engineering, waste management, and soil science, who need to keep up to date with the most recent advances in low-carbon technologies. This audience will develop a better understanding of these low-carbon mechanisms and advanced characterization technologies, fostering the future development of low-carbon technologies and the actualization of green and sustainable remediation. Focuses on stabilization/solidification for environmental remediation, as one of the most widely used environmental remediation technologies in field-scale applications Details the most advanced and up-to-date low-carbon sustainable technologies necessary to guide future research and sustainable development Provides comprehensive coverage of low-carbon solutions for treating a variety of hazardous wastes as well as contaminated soil and sediment

Book Quantum Modeling of Complex Molecular Systems

Download or read book Quantum Modeling of Complex Molecular Systems written by Jean-Louis Rivail and published by Springer. This book was released on 2015-10-13 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multi-author contributed volume includes methodological advances and original applications to actual chemical or biochemical phenomena which were not possible before the increased sophistication of modern computers. The chapters contain detailed reviews of the developments of various computational techniques, used to study complex molecular systems such as molecular liquids and solutions (particularly aqueous solutions), liquid-gas, solid-gas interphase and biomacromolecular systems. Quantum modeling of complex molecular systems is a useful resource for graduate students and fledgling researchers and is also an excellent companion for research professionals engaged in computational chemistry, material science, nanotechnology, physics, drug design, and molecular biochemistry.