EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Molecular Electronic Devices II

Download or read book Molecular Electronic Devices II written by Carter and published by CRC Press. This book was released on 1987-08-28 with total page 860 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Electronics

    Book Details:
  • Author : Juan Carlos Cuevas
  • Publisher : World Scientific
  • Release : 2010
  • ISBN : 9814282588
  • Pages : 724 pages

Download or read book Molecular Electronics written by Juan Carlos Cuevas and published by World Scientific. This book was released on 2010 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general. Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.

Book Molecular electronic devices   2

Download or read book Molecular electronic devices 2 written by and published by . This book was released on 1987 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Electronics and Molecular Electronic Devices

Download or read book Molecular Electronics and Molecular Electronic Devices written by Kristof Sienicki and published by CRC Press. This book was released on 1993-09-27 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular Electronics and Molecular Electronic Devices is a book that provides a comprehensive review of current problems and information regarding aspects of molecular electronics and molecular electronic devices. Experimental and theoretical aspects of molecular electronics and molecular electronic devices are reviewed by distinguished researchers working in chemistry, physics, computer science, and various areas of biology. These books will be an excellent reference for physicists, chemists, electronics engineers and researchers interested in molecular electronics and molecular electronic devices.

Book Molecular Electronic Devices II

Download or read book Molecular Electronic Devices II written by Carter and published by CRC Press. This book was released on 1987-08-28 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Electronics and Molecular Electronic Devices

Download or read book Molecular Electronics and Molecular Electronic Devices written by Kristof Sienicki and published by CRC Press. This book was released on 1993-03-25 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular Electronics and Molecular Electronic Devices is a book that provides a comprehensive review of current problems and information regarding all aspects of molecular electronics and molecular electronic devices. Experimental and theoretical aspects of molecular electronics and molecular electronic devices are reviewed by distinguished researchers working in chemistry, physics, computer science, and various areas of biology. These books are excellent references for physicists, chemists, electronics engineers, materials scientists, and researchers interested in molecular electronics and molecular electronic devices.

Book Molecular Electronics and Molecular Electronic Devices

Download or read book Molecular Electronics and Molecular Electronic Devices written by Kristof Sienicki and published by CRC-Press. This book was released on 1993-03-25 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular Electronics and Molecular Electronic Devices is a book that provides a comprehensive review of current problems and information regarding all aspects of molecular electronics and molecular electronic devices. Experimental and theoretical aspects of molecular electronics and molecular electronic devices are reviewed by distinguished researchers working in chemistry, physics, computer science, and various areas of biology. These books are excellent references for physicists, chemists, electronics engineers, materials scientists, and researchers interested in molecular electronics and molecular electronic devices.

Book Molecular Electronics and Molecular Electronic Devices

Download or read book Molecular Electronics and Molecular Electronic Devices written by Kristof Sienicki and published by CRC Press. This book was released on 1994-03-22 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular Electronics and Molecular Electronic Devices is a new book series that reflects the state of the art in the science and technology of molecular electronic devices. It provides a comprehensive review of current problems and the latest information regarding all aspects of molecular electronics and molecular electronic devices. Experimental and theoretical aspects of molecular electronics and molecular electronic devices are reviewed by distinguished researchers working in chemistry, physics, computer science, and various areas of biology.

Book Molecular Electronic Devices

Download or read book Molecular Electronic Devices written by Forrest L. Carter and published by . This book was released on 1982 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Scale Electronics

Download or read book Molecular Scale Electronics written by Xuefeng Guo and published by John Wiley & Sons. This book was released on 2020-07-02 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides in-depth knowledge on molecular electronics and emphasizes the techniques for designing molecular junctions with controlled functionalities This comprehensive book covers the major advances with the most general applicability in the field of molecular electronic devices. It emphasizes new insights into the development of efficient platform methodologies for building such reliable devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. It also helps to develop an understanding of the device fabrication processes and the characteristics of the resulting electrode-molecule interface. Beginning with an introduction to the subject, Molecular-Scale Electronics: Concept, Fabrication and Applications offers full chapter coverage on topics such as: Metal Electrodes for Molecular Electronics; Carbon Electrodes for Molecular Electronics; Other Electrodes for Molecular Electronics; Novel Phenomena in Single-Molecule Junctions; and Supramolecular Interactions in Single-Molecule Junctions. Other chapters discuss Theoretical Aspects for Electron Transport through Molecular Junctions; Characterization Techniques for Molecular Electronics; and Integrating Molecular Functionalities into Electrical Circuits. The book finishes with a summary of the primary challenges facing the field and offers an outlook at its future. * Summarizes a number of different approaches for forming molecular-scale junctions and discusses various experimental techniques for examining these nanoscale circuits in detail * Gives overview of characterization techniques and theoretical simulations for molecular electronics * Highlights the major contributions and new concepts of integrating molecular functionalities into electrical circuits * Provides a critical discussion of limitations and main challenges that still exist for the development of molecular electronics * Suited for readers studying or doing research in the broad fields of Nano/molecular electronics and other device-related fields Molecular-Scale Electronics is an excellent book for materials scientists, electrochemists, electronics engineers, physical chemists, polymer chemists, and solid-state chemists. It will also benefit physicists, semiconductor physicists, engineering scientists, and surface chemists.

Book Molecular Electronic Devices II

Download or read book Molecular Electronic Devices II written by Carter and published by CRC Press. This book was released on 1987-08-28 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Unimolecular and Supramolecular Electronics II

Download or read book Unimolecular and Supramolecular Electronics II written by Robert M. Metzger and published by Springer Science & Business Media. This book was released on 2012-01-10 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: G. C. Solomon C. Herrmann M. A. Ratner Molecular Electronic Junction Transport: Some Pathways and Some Ideas R. M. Metzger D. L. Mattern Unimolecular Electronic Devices B. Branchi F. C. Simeone M. A. Rampi Active and Non-Active Large-Area Metal–Molecules–Metal Junctions C. Li A. Mishchenko T. Wandlowski Charge Transport in Single Molecular Junctions at the Solid/Liquid Interface K. W. Hipps Tunneling Spectroscopy of Organic Monolayers and Single Molecules N. Renaud M. Hliwa C. Joachim Single Molecule Logical Devices

Book Molecular Electronics  An Introduction To Theory And Experiment  2nd Edition

Download or read book Molecular Electronics An Introduction To Theory And Experiment 2nd Edition written by Elke Scheer and published by World Scientific. This book was released on 2017-05-19 with total page 846 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular Electronics is self-contained and unified in its presentation. It can be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included in this new edition are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.

Book Handbook of Single Molecule Electronics

Download or read book Handbook of Single Molecule Electronics written by Kasper Moth-Poulsen and published by CRC Press. This book was released on 2016-01-05 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Single-molecule electronics has evolved as a vibrant research field during the last two decades. The vision is to be able to create electronic components at the highest level of miniaturization-the single molecule. This book compiles and details cutting-edge research with contributions from chemists, physicists, theoreticians, and engineers. It cov

Book Molecular Electronic Devices

Download or read book Molecular Electronic Devices written by Forrest L. Carter and published by . This book was released on 1982 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Electronics

    Book Details:
  • Author : Juan Carlos Cuevas
  • Publisher : World Scientific
  • Release : 2010
  • ISBN : 9814282596
  • Pages : 724 pages

Download or read book Molecular Electronics written by Juan Carlos Cuevas and published by World Scientific. This book was released on 2010 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. The birth of molecular electronics. 1.1. Why molecular electronics?. 1.2. A brief history of molecular electronics. 1.3. Scope and structure of the book -- 2. Fabrication of metallic atomic-size contacts. 2.1. Introduction. 2.2. Techniques involving the scanning electron microscope (STM). 2.3. Methods using atomic force microscopes (AFM). 2.4. Contacts between macroscopic wires. 2.5. Transmission electron microscope. 2.6. Mechanically controllable break-junctions (MCBJ). 2.7. Electromigration technique. 2.8. Electrochemical methods. 2.9. Recent developments. 2.10. Electronic transport measurements. 2.11. Exercises -- 3. Contacting single molecules: Experimental techniques. 3.1. Introduction. 3.2. Molecules for molecular electronics. 3.3. Deposition of molecules. 3.4. Contacting single molecules. 3.5. Contacting molecular ensembles. 3.6. Exercises -- 4. The scattering approach to phase-coherent transport in nanocontacts. 4.1. Introduction. 4.2. From mesoscopic conductors to atomic-scale junctions. 4.3. Conductance is transmission : heuristic derivation of the Landauer formula. 4.4. Penetration of a potential barrier : tunnel effect. 4.5. The scattering matrix. 4.6. Multichannel Landauer formula. 4.7. Shot noise. 4.8. Thermal transport and thermoelectric phenomena. 4.9. Limitations of the scattering approach. 4.10. Exercises -- 5. Introduction to Green's function techniques for systems in equilibrium. 5.1. The Schrodinger and Heisenberg pictures. 5.2. Green's functions of a noninteracting electron system. 5.3. Application to tight-binding Hamiltonians. 5.4. Green's functions in time domain. 5.5. Exercises -- 6. Green's functions and Feynman diagrams. 6.1. The interaction picture. 6.2. The time-evolution operator. 6.3. Perturbative expansion of causal Green's functions. 6.4. Wick's theorem. 6.5. Feynman diagrams. 6.6. Feynman diagrams in energy space. 6.7. Electronic self-energy and Dyson's equation. 6.8. Self-consistent diagrammatic theory : the Hartree-Fock approximation. 6.9. The Anderson model and the Kondo effect. 6.10. Final remarks. 6.11. Exercises -- 7. Nonequilibrium Green's functions formalism. 7.1. The Keldysh formalism. 7.2. Diagrammatic expansion in the Keldysh formalism. 7.3. Basic relations and equations in the Keldysh formalism. 7.4. Application of Keldysh formalism to simple transport problems. 7.5. Exercises -- 8. Formulas of the electrical current : exploiting the Keldysh formalism. 8.1. Elastic current : microscopic derivation of the Landauer formula. 8.2. Current through an interacting atomic-scale junction. 8.3. Time-dependent transport in nanoscale junctions. 8.4. Exercises -- 9. Electronic structure I: Tight-binding approach. 9.1. Basics of the tight-binding approach. 9.2. The extended Huckel method. 9.3. Matrix elements in solid state approaches. 9.4. Slater-Koster two-center approximation. 9.5. Some illustrative examples. 9.6. The NRL tight-binding method. 9.7. The tight-binding approach in molecular electronics. 9.8. Exercises -- 10. Electronic structure II : density functional theory. 10.1. Elementary quantum mechanics. 10.2. Early density functional theories. 10.3. The Hohenberg-Kohn theorems. 10.4. The Kohn-Sham approach. 10.5. The exchange-correlation functionals. 10.6. The basic machinery of DFT. 10.7. DFT performance. 10.8. DFT in molecular electronics. 10.9. Exercises -- 11. The conductance of a single atom. 11.1. Landauer approach to conductance: brief reminder. 11.2. Conductance of atomic-scale contacts. 11.3. Conductance histograms. 11.4. Determining the conduction channels. 11.5. The chemical nature of the conduction channels of oneatom contacts. 11.6. Some further issues. 11.7. Conductance fluctuations. 11.8. Atomic chains : parity oscillations in the conductance. 11.9. Concluding remarks. 11.10. Exercises -- 12. Spin-dependent transport in ferromagnetic atomic contacts. 12.1. Conductance of ferromagnetic atomic contacts. 12.2. Magnetoresistance of ferromagnetic atomic contacts. 12.3. Anisotropic magnetoresistance in atomic contacts. 12.4. Concluding remarks and open problems -- 13. Coherent transport through molecular junctions I : basic concepts. 13.1. Identifying the transport mechanism in single-molecule junctions. 13.2. Some lessons from the resonant tunneling model. 13.3. A two-level model. 13.4. Length dependence of the conductance. 13.5. Role of conjugation in [symbol]-electron systems. 13.6. Fano resonances. 13.7. Negative differential resistance. 13.8. Final remarks. 13.9. Exercises -- 14. Coherent transport through molecular junctions II : test-bed molecules. 14.1. Coherent transport through some test-bed molecules. 14.2. Metal-molecule contact : the role of anchoring groups. 14.3. Tuning chemically the conductance : the role of side-groups. 14.4. Controlled STM-based single-molecule experiments. 14.5. Conclusions and open problems -- 15. Single-molecule transistors : Coulomb blockade and Kondo physics. 15.1. Introduction. 15.2. Charging effects in transport through nanoscale devices. 15.3. Single-molecule three-terminal devices. 15.4. Coulomb blockade theory : constant interaction model. 15.5. Towards a theory of Coulomb blockade in molecular transistors. 15.6. Intermediate coupling : cotunneling and Kondo effect. 15.7. Single-molecule transistors : experimental results. 15.8. Exercises -- 16. Vibrationally-induced inelastic current I : experiment. 16.1. Introduction. 16.2. Inelastic electron tunneling spectroscopy (IETS). 16.3. Highly conductive junctions : point-contact spectroscopy (PCS). 16.4. Crossover between PCS and IETS. 16.5. Resonant inelastic electron tunneling spectroscopy (RIETS). 16.6. Summary of vibrational signatures -- 17. Vibrationally-induced inelastic current II : theory. 17.1. Weak electron-phonon coupling regime. 17.2. Intermediate electron-phonon coupling regime. 17.3. Strong electron-phonon coupling regime. 17.4. Concluding remarks and open problems. 17.5. Exercises -- 18. The hopping regime and transport through DNA molecules. 18.1. Signatures of the hopping regime. 18.2. Hopping transport in molecular junctions : experimental examples. 18.3. DNA-based molecular junctions. 18.4. Exercises -- 19. Beyond electrical conductance : shot noise and thermal transport. 19.1. Shot noise in atomic and molecular junctions. 19.2. Heating and heat conduction. 19.3. Thermoelectricity in molecular junctions -- 20. Optical properties of current-carrying molecular junctions. 20.1. Surface-enhanced Raman spectroscopy of molecular junctions. 20.2. Transport mechanisms in irradiated molecular junctions. 20.3. Theory of photon-assisted tunneling. 20.4. Experiments on radiation-induced transport in atomic and molecular junctions. 20.5. Resonant current amplification and other transport phenomena in ac driven molecular junctions. 20.6. Fluorescence from current-carrying molecular junctions. 20.7. Molecular optoelectronic devices. 20.8. Final remarks. 20.9. Exercises -- 21. What is missing in this book?

Book Molecular Electronics

    Book Details:
  • Author : Mahler
  • Publisher : CRC Press
  • Release : 2020-08-11
  • ISBN : 1000105253
  • Pages : 413 pages

Download or read book Molecular Electronics written by Mahler and published by CRC Press. This book was released on 2020-08-11 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrating molecular physics and information theory, this work presents molecular electronics as a method for information storage and retrieval that incorporates nanometer-scaled systems, uses microscopic particles and exploits the laws of quantum mechanics. It furnishes application examples employing properties of distinct molecules joined together to a macroscopic ensemble of virtually identical units.