EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modular Multilevel Converter Modelling and Simulation for HVDC Systems

Download or read book Modular Multilevel Converter Modelling and Simulation for HVDC Systems written by Davide del Giudice and published by Springer Nature. This book was released on 2022-10-21 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive review of the models and approaches that can be employed to simulate modular multilevel converters (MMCs). Each solution is described in terms of operating principle, fields of applicability, advantages, and limitations. In addition, this work proposes a novel and efficient simulation approach for MMCs based on sub-circuit isomorphism. This technique, which has its roots in the electronics fields, can be profitably exploited to simulate MMCs regardless of the model used to describe its sub-modules, including the most accurate ones. Lastly, this book considers a well-known high voltage direct current (HVDC) benchmark system consisting of two MMCs. After describing the implementation details of each benchmark component, simulation results in several scenarios (ranging from normal operating conditions to faults in the AC and DC grid) are included to validate the proposed approach and showcase its key features. Due to its educational content, this book constitutes a useful guide for PhD students and researchers interested in the topic of MMCs and their simulation. It also serves as a starting platform for junior electrical engineers who work in the field of power electronic converters for HVDC systems.

Book Design  Control  and Application of Modular Multilevel Converters for HVDC Transmission Systems

Download or read book Design Control and Application of Modular Multilevel Converters for HVDC Transmission Systems written by Kamran Sharifabadi and published by John Wiley & Sons. This book was released on 2016-08-22 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission. Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids. Key features: Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland. Comprehensive explanation of MMC application in HVDC and MTDC transmission technology. Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore. Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals. A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website. This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.

Book Design  Control  and Application of Modular Multilevel Converters for HVDC Transmission Systems

Download or read book Design Control and Application of Modular Multilevel Converters for HVDC Transmission Systems written by Kamran Sharifabadi and published by John Wiley & Sons. This book was released on 2016-10-17 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission. Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids. Key features: Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland. Comprehensive explanation of MMC application in HVDC and MTDC transmission technology. Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore. Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals. A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website. This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.

Book Modular Multilevel Converters

Download or read book Modular Multilevel Converters written by Sixing Du and published by John Wiley & Sons. This book was released on 2018-02-22 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: An invaluable academic reference for the area of high-power converters, covering all the latest developments in the field High-power multilevel converters are well known in industry and academia as one of the preferred choices for efficient power conversion. Over the past decade, several power converters have been developed and commercialized in the form of standard and customized products that power a wide range of industrial applications. Currently, the modular multilevel converter is a fast-growing technology and has received wide acceptance from both industry and academia. Providing adequate technical background for graduate- and undergraduate-level teaching, this book includes a comprehensive analysis of the conventional and advanced modular multilevel converters employed in motor drives, HVDC systems, and power quality improvement. Modular Multilevel Converters: Analysis, Control, and Applications provides an overview of high-power converters, reference frame theory, classical control methods, pulse width modulation schemes, advanced model predictive control methods, modeling of ac drives, advanced drive control schemes, modeling and control of HVDC systems, active and reactive power control, power quality problems, reactive power, harmonics and unbalance compensation, modeling and control of static synchronous compensators (STATCOM) and unified power quality compensators. Furthermore, this book: Explores technical challenges, modeling, and control of various modular multilevel converters in a wide range of applications such as transformer and transformerless motor drives, high voltage direct current transmission systems, and power quality improvement Reflects the latest developments in high-power converters in medium-voltage motor drive systems Offers design guidance with tables, charts graphs, and MATLAB simulations Modular Multilevel Converters: Analysis, Control, and Applications is a valuable reference book for academic researchers, practicing engineers, and other professionals in the field of high power converters. It also serves well as a textbook for graduate-level students.

Book Efficient Modeling of Modular Multilevel HVDC Converters  MMC  on Electromagnetic Transient Simulation Programs

Download or read book Efficient Modeling of Modular Multilevel HVDC Converters MMC on Electromagnetic Transient Simulation Programs written by Udana Gnanarathna and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent introduction of a new converter topology, the modular multilevel converter (MMC) is a major step forward in voltage sourced converter (VSC) technology for high voltage, high power applications. To obtain a multilevel ac output waveform, a large number of semiconductor switches has to be used in the converter. The number of switches in the MMC for HVDC transmission is typically two orders of magnitudes larger than that in a two or three level VSC used in earlier generation. This large device count creates a computational challenge for electromagnetic transients (EMT) simulation programs, as it significantly increases the simulation time. The purpose of this research is to investigate whether the simulation can be speeded up. This research develops an efficient, time-varying Thévenin's equivalent model for the MMC converter based on partitioning the system's admittance matrix. EMT simulation results show that the proposed equivalent model can drastically reduce the computational time without loss of accuracy. The use of the proposed equivalent method is demonstrated by simulating a point to point MMC based HVDC transmission system successfully with more than 100 levels. This approach enables what was hitherto not practical; the modeling of large MMC based HVDC systems on personal computers. With the assumption of ideal switch operation and using an equivalent average capacitor value based approach, an average valued model of MMC is also proposed in this thesis. The average model can be accurately used in most of the system level studies. The control algorithms and other modeling aspects of MMC applications are also presented in this thesis. One of the advantages of multilevel converters is the low operating losses as the smaller switching frequency of each individual power electronics switch and the low voltage step change during each switching. Using a recently developed, time domain simulation approach, the operating losses of the MMC converter are estimated in this thesis. When comparing the MMC operating losses against the losses of two-level VSC, the power loss for the two-level VSC is found to be significantly higher than the power loss of the MMC.

Book Real time Simulation of Modular Multilevel Converters

Download or read book Real time Simulation of Modular Multilevel Converters written by Paradis Dominic and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design  Modeling and Control of Modular Multilevel Converter Based HVDC Systems

Download or read book Design Modeling and Control of Modular Multilevel Converter Based HVDC Systems written by Ghazal Falahi and published by . This book was released on 2015 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling and Control of Modular Multilevel Converter Based on Ordinary Differential Equations and Its Applications for HVDC System

Download or read book Modeling and Control of Modular Multilevel Converter Based on Ordinary Differential Equations and Its Applications for HVDC System written by Haihao Jiang and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "High-voltage direct current (HVDC) system is more efficient than high-voltage alternating current (HVAC) system for long-distance, bulk power transmission. Modularity, flexibility, reliability and high efficiency make the modular multilevel converter (MMC) the topology of choice in HVDC applications. Because the increasing number of installations shows that the MMC-HVDC is the HVDC of the future, this thesis is continuing research to advance the capability of the MMC-HVDC. This thesis focuses on fast simulation capability and control strategies for the MMC-HVDC. The main objectives are: (1) to develop a fast and accurate simulation model of a single MMC station and models of multi-terminal MMC-HVDC stations (MTDC-MMC); (2) to investigate the method to design proper parameters for high damping; (3) to design the MMC-HVDC with the capability of power oscillation damping (POD). Simulation is computation-intensive in MMC. The thesis develops a fast and accurate method by which an MMC station is modeled by ordinary differential equations (ODE). The proposed MMC ODE model is implemented in MATLAB SIMULINK and its correctness is validated by the MMC Detail Equivalent Model (DEM) in RT-LAB. Taking advantage of its speed and accuracy, a Four-Terminal MMC-HVDC system based on the MMC ODE model is developed. The ODE model meets the speed and accuracy requirements of power systems engineers who are concerned with planning, operation and protection studies. As the ordinary differential equations are nonlinear, small perturbation about a steady-state is applied to obtain the linearized time-periodic matrix. The steady-state takes a long time to simulate because it depends on the transients to have all damped out. The method of Aprille and Trick is applied. Simulation converges to the steady-state in one cycle of 50 Hz. The resultant linearized matrix is time-periodic. The Floquet-Lyapunov Theorem is applied to construct the state-transition matrix from the linearized time-periodic matrix. The eigenvalues of the state-transition matrix contain the coefficients of damping. Graphs of damping coefficients plotted against different sizes of circuit parameters are displayed to assist designers in realizing high damping. The thesis looks for opportunities to add value to the MMC-HVDC. The active power transmissibility of AC transmission lines is limited by the transient stability limit which is significantly below the thermal limit. Extensive research and development have been pursued to increase the transient stability limit by flexible AC transmissions system (FACTS). This thesis seeks to use the MMC-HVDC to operate as power oscillation damper to increase the power transmissibility. The thesis looks for opportunities to integrate previously proven control methods into a common universal control. The Universal Controller brings together the deadbeat control, the circulating current suppression control (CCSC), the POD and the decoupled P-Q strategy in the control of the MMC-HVDC station by the MMC ODE model. Deadbeat control enables the MMC to survive destructively large AC fault currents to improve the transient stability of AC grids"--

Book High Voltage Direct Current Transmission

Download or read book High Voltage Direct Current Transmission written by Dragan Jovcic and published by John Wiley & Sons. This book was released on 2019-07-01 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the latest developments in switchgear and DC/DC converters for DC grids, and includes substantially expanded material on MMC HVDC This newly updated edition covers all HVDC transmission technologies including Line Commutated Converter (LCC) HVDC; Voltage Source Converter (VSC) HVDC, and the latest VSC HVDC based on Modular Multilevel Converters (MMC), as well as the principles of building DC transmission grids. Featuring new material throughout, High Voltage Direct Current Transmission: Converters, Systems and DC Grids, 2nd Edition offers several new chapters/sections including one on the newest MMC converters. It also provides extended coverage of switchgear, DC grid protection and DC/DC converters following the latest developments on the market and in research projects. All three HVDC technologies are studied in a wide range of topics, including: the basic converter operating principles; calculation of losses; system modelling, including dynamic modelling; system control; HVDC protection, including AC and DC fault studies; and integration with AC systems and fundamental frequency analysis. The text includes: A chapter dedicated to hybrid and mechanical DC circuit breakers Half bridge and full bridge MMC: modelling, control, start-up and fault management A chapter dedicated to unbalanced operation and control of MMC HVDC The advancement of protection methods for DC grids Wideband and high-order modeling of DC cables Novel treatment of topics not found in similar books, including SimPowerSystems models and examples for all HVDC topologies hosted by the 1st edition companion site. High Voltage Direct Current Transmission: Converters, Systems and DC Grids, 2nd Edition serves as an ideal textbook for a graduate-level course or a professional development course.

Book Voltage Sourced Converters in Power Systems

Download or read book Voltage Sourced Converters in Power Systems written by Amirnaser Yazdani and published by John Wiley & Sons. This book was released on 2010-03-25 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents Fundamentals of Modeling, Analysis, and Control of Electric Power Converters for Power System Applications Electronic (static) power conversion has gained widespread acceptance in power systems applications; electronic power converters are increasingly employed for power conversion and conditioning, compensation, and active filtering. This book presents the fundamentals for analysis and control of a specific class of high-power electronic converters—the three-phase voltage-sourced converter (VSC). Voltage-Sourced Converters in Power Systems provides a necessary and unprecedented link between the principles of operation and the applications of voltage-sourced converters. The book: Describes various functions that the VSC can perform in electric power systems Covers a wide range of applications of the VSC in electric power systems—including wind power conversion systems Adopts a systematic approach to the modeling and control design problems Illustrates the control design procedures and expected performance based on a comprehensive set of examples and digital computer time-domain simulation studies This comprehensive text presents effective techniques for mathematical modeling and control design, and helps readers understand the procedures and analysis steps. Detailed simulation case studies are included to highlight the salient points and verify the designs. Voltage-Sourced Converters in Power Systems is an ideal reference for senior undergraduate and graduate students in power engineering programs, practicing engineers who deal with grid integration and operation of distributed energy resource units, design engineers, and researchers in the area of electric power generation, transmission, distribution, and utilization.

Book Characteristic Investigation and Control of a Modular Multilevel Converter based HVDC System Under Single line to ground Fault Conditions

Download or read book Characteristic Investigation and Control of a Modular Multilevel Converter based HVDC System Under Single line to ground Fault Conditions written by and published by . This book was released on 2014 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper presents the analysis and control of a multilevel modular converter (MMC)-based HVDC transmission system under three possible single-line-to-ground fault conditions, with special focus on the investigation of their different fault characteristics. Considering positive-, negative-, and zero-sequence components in both arm voltages and currents, the generalized instantaneous power of a phase unit is derived theoretically according to the equivalent circuit model of the MMC under unbalanced conditions. Based on this model, a novel double-line frequency dc-voltage ripple suppression control is proposed. This controller, together with the negative-and zero-sequence current control, could enhance the overall fault-tolerant capability of the HVDC system without additional cost. To further improve the fault-tolerant capability, the operation performance of the HVDC system with and without single-phase switching is discussed and compared in detail. Lastly, simulation results from a three-phase MMC-HVDC system generated with MATLAB/Simulink are provided to support the theoretical analysis and proposed control schemes.

Book Multilevel Converters  Analysis  Modulation  Topologies  and Applications

Download or read book Multilevel Converters Analysis Modulation Topologies and Applications written by Gabriele Grandi and published by MDPI. This book was released on 2019-10-14 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of scientific papers concerning multilevel inverters examined from different points of view. Many applications are considered, such as renewable energy interface, power conditioning systems, electric drives, and chargers for electric vehicles. Different topologies have been examined in both new configurations and well-established structures, introducing novel and particular modulation strategies, and examining the effect of modulation techniques on voltage and current harmonics and the total harmonic distortion.

Book Efficient Modeling of Modular Multilevel Converters for HVDC Transmission Systems

Download or read book Efficient Modeling of Modular Multilevel Converters for HVDC Transmission Systems written by Noman Ahmed and published by . This book was released on 2018 with total page 49 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Artificial Intelligence and Heuristics for Smart Energy Efficiency in Smart Cities

Download or read book Artificial Intelligence and Heuristics for Smart Energy Efficiency in Smart Cities written by Mustapha Hatti and published by Springer Nature. This book was released on 2021-11-24 with total page 927 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book emphasizes the role of micro-grid systems and connected networks for the strategic storage of energy through the use of information and communication techniques, big data, the cloud, and meta-heuristics to support the greed for artificial intelligence techniques in data and the implementation of global strategies to meet the challenges of the city in the broad sense. The intelligent management of renewable energy in the context of the energy transition requires the use of techniques and tools based on artificial intelligence (AI) to overcome the challenges of the intermittence of resources and the cost of energy. The advent of the smart city makes an increased call for the integration of artificial intelligence and heuristics to meet the challenge of the increasing migration of populations to the city, in order to ensure food, energy, and environmental security of the citizen of the city and his well-being. This book is intended for policymakers, academics, practitioners, and students. Several real cases are exposed throughout the book to illustrate the concepts and methods of the networks and systems presented. This book proposes the development of new technological innovations—mainly ICT—the concept of “Smart City” appears as a means of achieving more efficient and sustainable cities. The overall goal of the book is to develop a comprehensive framework to help public and private stakeholders make informed decisions on smart city investment strategies and develop skills for assessment and prioritization, including resolution of difficulties with deployment and reproducibility.

Book ICPES 2019

Download or read book ICPES 2019 written by Farhad Shahnia and published by Springer Nature. This book was released on 2020-07-01 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights various applications of renewable energy systems and their enabling technologies in electrical power systems. It features selected articles from the 9th International Conference on Power and Energy Systems (ICPES 2019), held in Perth, Australia, which presented the latest advances in the field and provided a platform to exchange ideas and foster future collaboration with a sustainable future in mind.

Book HVDC Grids

Download or read book HVDC Grids written by Dirk Van Hertem and published by John Wiley & Sons. This book was released on 2016-02-23 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses HVDC grids based on multi-terminal voltage-source converters (VSC), which is suitable for the connection of offshore wind farms and a possible solution for a continent wide overlay grid. HVDC Grids: For Offshore and Supergrid of the Future begins by introducing and analyzing the motivations and energy policy drives for developing offshore grids and the European Supergrid. HVDC transmission technology and offshore equipment are described in the second part of the book. The third part of the book discusses how HVDC grids can be developed and integrated in the existing power system. The fourth part of the book focuses on HVDC grid integration, in studies, for different time domains of electric power systems. The book concludes by discussing developments of advanced control methods and control devices for enabling DC grids. Presents the technology of the future offshore and HVDC grid Explains how offshore and HVDC grids can be integrated in the existing power system Provides the required models to analyse the different time domains of power system studies: from steady-state to electromagnetic transients This book is intended for power system engineers and academics with an interest in HVDC or power systems, and policy makers. The book also provides a solid background for researchers working with VSC-HVDC technologies, power electronic devices, offshore wind farm integration, and DC grid protection.

Book Modular Multilevel Converters with Multi frequency Power Transfer

Download or read book Modular Multilevel Converters with Multi frequency Power Transfer written by Yuan Li and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The MMC is the dominant voltage-sourced converter technology for HVDC systems including terrestrial power transmission and offshore wind power integration. It is also a state-of-the-art solution for emerging MVDC applications such as bipolar dc distribution and grid integration of renewable energy resources. Significant research has been recently targeting the development of new MMC-based topologies that can reap the benefits of the conventional dc-ac MMC in dc grids and hybrid ac/dc power systems. Notable examples include dc-dc converters, multi-port converters, line power flow controllers and power tapping stations. This thesis introduces the concept of multi-frequency power transfer in MMCs where the magnetics windings are multi-tasked to carry currents with multiple frequency components, namely dc and fundamental frequency. Core dc flux cancellation is imposed by appropriate orientation of the individual windings. This novel power transfer mechanism can eliminate redundant energy conversion through partial-power-processing while offering increased flexibility in converter port power flows. Based on the multi-frequency power transfer concept, new MMC-based topologies are proposed that are well suited for MVDC and HVDC grids and hybrid ac/dc systems. Firstly, a new class of single-stage modular multilevel dc-dc converter, termed the M2DC-CT, is proposed for applications requiring either high or low dc stepping ratios. By placing center-tapped transformer windings in series with the arms in each phase leg, the advantages of minimized ac arm currents and absence of dc voltage stress between windings are simultaneously obtained unlike in prior art. Modeling and analysis gives insight into the M2DC-CT multi-frequency power transfer characteristics and suitable converter controls are developed. Converter operation is validated through simulation and experiment. %The M2DC-CT is further extended into a three-port converter by addition of a grid side transformer winding. Secondly, a dual MMC structure is presented that achieves multi-frequency power transfer by tying together the three mid-points of the converter-side center-tapped transformer windings to form an additional dc port. This creates a bipolar MMC with the ability to balance the dc pole power flows in bipolar dc grids. The employed center-tapped transformer has a Volt-Ampere rating that is the same as a conventional grid interfacing transformer. Dynamic controls formulated in the $\alpha\beta$-frame provide tight regulation of the port power flows while ensuring balanced capacitor voltages. The independent pole balancing capability is confirmed through simulation of detailed MVDC-level and HVDC-level PSCAD models and rigorous experimental testing on a scaled-down laboratory prototype. Thirdly, the aforementioned multi-frequency dual MMC structure is proposed for use as a three-port MMC. It allows simultaneous dc-dc and dc-ac conversions between an ac grid and two dc systems, which is distinctly different from the earlier bipolar dc grid application. The $\alpha\beta$ controls developed earlier are easily extended for the three-port application by assigning appropriate reference signals. Steady-state and dynamic operation of the three-port dual MMC topology is validated by simulation with a HVDC-level PSCAD model and extensive experimental tests. Lastly, a detailed comparative assessment of three-port MMCs for high-power applications is conducted. The proposed three-port dual MMC structure and three-port version of the M2DC-CT are compared against two other existing three-port MMCs, on the basis of efficiency, semiconductor effort, internal energy storage and magnetics. Both MVDC and HVDC case studies are examined including several different power flow cases, with provisions for fault blocking. The results indicate the use of multi-frequency power transfer can enable significant reductions in converter operating losses and cost relative to prior art, depending on the application.