EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modern Singular Spectral Based Denoising and Filtering Techniques for 2D and 3D Reflection Seismic Data

Download or read book Modern Singular Spectral Based Denoising and Filtering Techniques for 2D and 3D Reflection Seismic Data written by R. K. Tiwari and published by Springer Nature. This book was released on 2020-03-25 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the latest advances in singular spectrum-based algorithms for seismic data processing, providing an update on recent developments in this field. Over the past few decades, researchers have extensively studied the application of the singular spectrum-based time and frequency domain eigen image methods, singular spectrum analysis (SSA) and multichannel SSA for various geophysical data. This book addresses seismic reflection signals, which represent the amalgamated signals of several unwanted signals/noises, such as ground roll, diffractions etc. Decomposition of such non-stationary and erratic field data is one of the multifaceted tasks in seismic data processing. This volume also includes comprehensive methodological and parametric descriptions, testing on appropriately generated synthetic data, as well as comparisons between time and frequency domain algorithms and their applications to the field data on 1D, 2D, 3D and 4D data sets. Lastly, it features an exclusive chapter with MATLAB coding for SSA.

Book Multiple Suppression from 2 D Shallow Marine Seismic Reflection Data Using Filtering and Deconvolution Approaches

Download or read book Multiple Suppression from 2 D Shallow Marine Seismic Reflection Data Using Filtering and Deconvolution Approaches written by and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract : A primary objective of the seismic data processing workflow is to improve the signal to noise ratio. A seismic record has many types of noise besides primary reflections which convey the vital information. A non-negligible part of these noises is multiple reflections causing difficulties and misunderstandings. This work examines filtering techniques with different methods and deconvolution technique in an effort to attenuate multiples on a 2D line of marine data from southwest of the Taiwan and compares of their results. Prior to evaluating methods for attenuating multiples, basic seismic processing was applied to the data. This consisted of the following: zeroing bad traces, applying a spherical divergence correction, and band-pass filtering. The data were then sorted into common-mid-point (CMP) gathers. These CMP gathers were analyzed, and stacking velocities were determined so that Normal Move-out (NMO) processing and stacking can be applied. Following this basic processing, two methods of multiple suppression were applied separately and evaluated: 1) filtering; 2) deconvolution. The filtering methods included stacking, frequency(f)-wavenumber(k) filtering and the Radon Transform methods were applied in an effort to separate multiples and primaries. Deconvolution was also utilized. Finally, the results of these approaches were discussed and compared with the goal of obtaining reasonable results. For this data set, it appears that the Radon Transform attenuates the long-period multiples better than the other approaches. Applying deconvolution on Radon-filtered data also shows better results. Stacked and migrated section of the data was considered as the final image.

Book Projected Gradient Descent Methods for Simultaneous source Seismic Data Processing

Download or read book Projected Gradient Descent Methods for Simultaneous source Seismic Data Processing written by Rongzhi Lin and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simultaneous-source acquisition is a seismic data acquisition technology that has become quite popular in recent years due to its economic advantages. Contrary to the conventional seismic acquisition, where one records the seismic response of only one source at a time, in simultaneous source acquisition, an array of receivers record the response of more than one source. The latter leads to a saving in acquisition time, but it creates new problems in subsequent data processing stages where each seismic record must correspond to the response of one single source. The basic idea for simultaneous source data processing is to separate the sources and thereby estimate the responses one would have acquired via a conventional seismic data acquisition. Then one can adopt a traditional seismic workflow to process and invert the seismic data. This thesis focuses on developing inversion schemes for separating simultaneous-source data. I pay particular attention to strategies based on the Projected Gradient Descent (PGD) method with a projection synthesized via robust denoising algorithms. First, I propose adopting a robust and sparse Radon transform to define a coherence pass projection operator to guarantee solutions that honour simultaneous source records. I show that a critical improvement in convergence is attainable when the coherence pass projection originates from a robust and sparse Radon transform. The latter is a consequence of having an iterative source separation algorithm that applies intense denoising to erratic blending noise in its initial iterations. In addition, I also propose an inversion scheme for simultaneous-source data separation based on a robust low-rank approximation algorithm. A robust Multichannel Singular Spectrum Analysis (MSSA) filtering is adopted as the projection operator to suppress source interferences in the frequency-space domain. The MSSA method is reformulated as a robust optimization problem that includes a low-rank Hankel matrix constraint, written as the product of two matrices of lower dimension obtained by the bifactored gradient descent (BFGD) method. In the second part of my thesis, I explore an inversion scheme for source separation and source reconstruction that honours actual source coordinates. The proposed method adopts a projected gradient descent optimization with a reduced-rank MSSA projection operator. I propose to adopt an Interpolated-MSSA (I-MSSA) to separate and reconstruct sources in situations where the acquired simultaneous source data correspond to sources with ar- arbitrary irregular-grid coordinates. Additionally, a faster and computational-efficient MSSA (FMSSA) algorithm was applied to speed up the method.

Book Documentation and User s Guide for Interactive Spectral Analysis and Filter Program Package Useful in the Processing of Seismic Reflection Data

Download or read book Documentation and User s Guide for Interactive Spectral Analysis and Filter Program Package Useful in the Processing of Seismic Reflection Data written by John J. Miller and published by . This book was released on 1982 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spectral Decomposition Using S transform for Hydrocarbon Detection and Filtering

Download or read book Spectral Decomposition Using S transform for Hydrocarbon Detection and Filtering written by Zhao Zhang and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectral decomposition is a modern tool that utilizes seismic data to generate additional useful information in seismic exploration for hydrocarbon detection, lithology identification, stratigraphic interpretation, filtering and others. Different spectral decomposition methods with applications to seismic data were reported and investigated in past years. Many methods usually do not consider the non-stationary features of seismic data and, therefore, are not likely to give satisfactory results. S-transform developed in recent years is able to provide time-dependent frequency analysis while maintaining a direct relationship with the Fourier spectrum, a unique property that other methods of spectral decomposition may not have. In this thesis, I investigated the feasibility and efficiency of using S-transform for hydrocarbon detection and time-varying surface wave filtering. S-transform was first applied to two seismic data sets from a clastic reservoir in the North Sea and a deep carbonate reservoir in the Sichuan Basin, China. Results from both cases demonstrated that S-transform decomposition technique can detect hydrocarbon zones effectively and helps to build the relationships between lithology changes and high frequency variation and between hydrocarbon occurrence and low-frequency anomaly. However, its time resolution needs to be improved. In the second part of my thesis, I used S-transform to develop a novel Time-frequency-wave-number-domain (T-F-K) filtering method to separate surface wave from reflected waves in seismic records. The S-T-F-K filtering proposed here can be used to analyze surface waves on separate f-k panels at different times. The method was tested using hydrophone records of four-component seismic data acquired in the shallow-water Persian Gulf where the average water depth is about 10m and Scholte waves and other surfaces wave persistently strong. Results showed that this new S-T-F-K method is able to separate and sttenuate surface waves and to improve greatly the quality of seismic reflection signals that are otherwise completely concealed by the aliased surface waves.

Book Seismic Data Analysis

    Book Details:
  • Author : Özdoğan Yilmaz
  • Publisher : SEG Books
  • Release : 2001
  • ISBN : 1560800941
  • Pages : 2065 pages

Download or read book Seismic Data Analysis written by Özdoğan Yilmaz and published by SEG Books. This book was released on 2001 with total page 2065 pages. Available in PDF, EPUB and Kindle. Book excerpt: Expanding the author's original work on processing to include inversion and interpretation, and including developments in all aspects of conventional processing, this two-volume set is a comprehensive and complete coverage of the modern trends in the seismic industry - from time to depth, from 3D to 4D, from 4D to 4C, and from isotropy to anisotropy.

Book Acquisition and Processing of Marine Seismic Data

Download or read book Acquisition and Processing of Marine Seismic Data written by Derman Dondurur and published by Elsevier. This book was released on 2018-03-09 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: Acquisition and Processing of Marine Seismic Data demonstrates the main principles, required equipment, and suitable selection of parameters in 2D/3D marine seismic data acquisition, as well as theoretical principles of 2D marine seismic data processing and their practical implications. Featuring detailed datasets and examples, the book helps to relate theoretical background to real seismic data. This reference also contains important QC analysis methods and results both for data acquisition and marine seismic data processing. Acquisition and Processing of Marine Seismic Data is a valuable tool for researchers and students in geophysics, marine seismics, and seismic data, as well as for oil and gas exploration. Contains simple step-by-step diagrams of the methodology used in the processing of seismic data to demonstrate the theory behind the applications Combines theory and practice, including extensive noise, QC, and velocity analyses, as well as examples for beginners in the seismic operations market Includes simple illustrations to provide to the audience an easy understanding of the theoretical background Contains enhanced field data examples and applications

Book Handbook of Poststack Seismic Attributes

Download or read book Handbook of Poststack Seismic Attributes written by Arthur E. Barnes and published by SEG Books. This book was released on 2016-10-15 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Poststack Seismic Attributes is a general reference for poststack seismic attributes. It discusses their theory, meaning, computation, and application, with the goal of improving understanding so that seismic attributes can be applied more effectively. The chapters of the book build upon each other and progress from basic attributes to more involved methods. The book introduces the ideas that underlie seismic attributes and reviews their history from their origins to current developments. It examines attribute maps and interval statistics; complex trace attributes; 3D attributes that quantify aspects of geologic structure and stratigraphy, primarily dip, azimuth, curvature, reflection spacing, and parallelism; seismic discontinuity attributes derived through variances or differences; spectral decomposition, thin-bed analysis, and waveform classification; the two poststack methods that purportedly record rock properties — relative acoustic impedance through recursive inversion, and Q estimation through spectral ratioing; and multiattribute analysis through volume blending, cross-plotting, principal component analysis, and unsupervised classification. The book ends with an overview of how seismic attributes aid data interpretation and discusses bright spots, frequency shadows, faults, channels, diapirs, and data reconnaissance. A glossary provides definitions of seismic attributes and methods, and appendices provide background mathematics. The book is intended for reflection seismologists engaged in petroleum exploration, including seismic data interpreters, data processors, researchers, and students.

Book Seismic Data Processing

Download or read book Seismic Data Processing written by Özdoğan Yilmaz and published by . This book was released on 1987 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geophysical Signal Analysis

Download or read book Geophysical Signal Analysis written by Enders A. Robinson and published by SEG Books. This book was released on 2000 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Addresses the construction, analysis, and interpretation of mathematical and statistical models. The practical use of the concepts and techniques developed is illustrated by numerous applications. The chosen examples will interest many readers, including those engaged in digital signal analysis in disciplines other than geophysics.

Book Digital Signal Processing with Matlab Examples  Volume 2

Download or read book Digital Signal Processing with Matlab Examples Volume 2 written by Jose Maria Giron-Sierra and published by Springer. This book was released on 2016-12-02 with total page 944 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second volume in a trilogy on modern Signal Processing. The three books provide a concise exposition of signal processing topics, and a guide to support individual practical exploration based on MATLAB programs. This second book focuses on recent developments in response to the demands of new digital technologies. It is divided into two parts: the first part includes four chapters on the decomposition and recovery of signals, with special emphasis on images. In turn, the second part includes three chapters and addresses important data-based actions, such as adaptive filtering, experimental modeling, and classification.

Book Machine Learning and Artificial Intelligence in Geosciences

Download or read book Machine Learning and Artificial Intelligence in Geosciences written by and published by Academic Press. This book was released on 2020-09-22 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Geophysics, Volume 61 - Machine Learning and Artificial Intelligence in Geosciences, the latest release in this highly-respected publication in the field of geophysics, contains new chapters on a variety of topics, including a historical review on the development of machine learning, machine learning to investigate fault rupture on various scales, a review on machine learning techniques to describe fractured media, signal augmentation to improve the generalization of deep neural networks, deep generator priors for Bayesian seismic inversion, as well as a review on homogenization for seismology, and more. Provides high-level reviews of the latest innovations in geophysics Written by recognized experts in the field Presents an essential publication for researchers in all fields of geophysics

Book The Sparse Fourier Transform

Download or read book The Sparse Fourier Transform written by Haitham Hassanieh and published by Morgan & Claypool. This book was released on 2018-02-27 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fourier transform is one of the most fundamental tools for computing the frequency representation of signals. It plays a central role in signal processing, communications, audio and video compression, medical imaging, genomics, astronomy, as well as many other areas. Because of its widespread use, fast algorithms for computing the Fourier transform can benefit a large number of applications. The fastest algorithm for computing the Fourier transform is the Fast Fourier Transform (FFT), which runs in near-linear time making it an indispensable tool for many applications. However, today, the runtime of the FFT algorithm is no longer fast enough especially for big data problems where each dataset can be few terabytes. Hence, faster algorithms that run in sublinear time, i.e., do not even sample all the data points, have become necessary. This book addresses the above problem by developing the Sparse Fourier Transform algorithms and building practical systems that use these algorithms to solve key problems in six different applications: wireless networks; mobile systems; computer graphics; medical imaging; biochemistry; and digital circuits. This is a revised version of the thesis that won the 2016 ACM Doctoral Dissertation Award.

Book Image Based Modeling

    Book Details:
  • Author : Long Quan
  • Publisher : Springer Science & Business Media
  • Release : 2010-07-10
  • ISBN : 144196679X
  • Pages : 257 pages

Download or read book Image Based Modeling written by Long Quan and published by Springer Science & Business Media. This book was released on 2010-07-10 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: “This book guides you in the journey of 3D modeling from the theory with elegant mathematics to applications with beautiful 3D model pictures. Written in a simple, straightforward, and concise manner, readers will learn the state of the art of 3D reconstruction and modeling.” —Professor Takeo Kanade, Carnegie Mellon University The computer vision and graphics communities use different terminologies for the same ideas. This book provides a translation, enabling graphics researchers to apply vision concepts, and vice-versa, independence of chapters allows readers to directly jump into a specific chapter of interest, compared to other texts, gives more succinct treatment overall, and focuses primarily on vision geometry. Image-Based Modeling is for graduate students, researchers, and engineers working in the areas of computer vision, computer graphics, image processing, robotics, virtual reality, and photogrammetry.

Book Inverse Problems of Acoustic and Elastic Waves

Download or read book Inverse Problems of Acoustic and Elastic Waves written by Fadil Santosa and published by SIAM. This book was released on 1984-01-01 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents: A Survey of the Vocal Tract Inverse Problem: Theory, Computations and Experiments; Convergence of Discrete Inversion Solutions; Inversion of Band Limited Reflection Seismograms; Some Recent Results in Inverse Scattering Theory; Well-Posed Questions and Exploration of the Space of Parameters in Linear and Nonlinear Inversion; The Seismic Reflection Inverse Problem; Migration Methods: Partial but Efficient Solutions to the Seismic Inverse Problem; Relationship Between Linearized Inverse Scattering and Seismic Migration; Project Review on Geophysical and Ocean Sound Speed Profile Inversion; Acoustic Tomography; Inverse Problems of Acoustic and Elastic Waves; Finite Element Methods with Anisotropic Diffusion for Singularly Perturbed Convection Diffusion Problems; Adaptive Grid Methods for Hyperbolic Partial Differential Equations; Some Simple Stability Results for Inverse Scattering Problems; Inverse Scattering for Stratified, Isotropic Elastic Media Using the Trace Method; A Layer-Stripping Solution of the Inverse Problem for a One-Dimensional Elastic Medium; On Constructing Solutions to an Inverse Euler-Bernoulli Beam Problem; Far Field Patterns in Acoustic and Electromagnetic Scattering Theory; Renaissance Inversion; On the Equilibrium Equations of Poroelasticity; GPST-A Versatile Numerical Method for Solving Inverse Problems of Partial Differential Equations; and Applications of Seismic Ray-Tracing Techniques to the Study of Earthquake Focal Regions.

Book Handbook of Blind Source Separation

Download or read book Handbook of Blind Source Separation written by Pierre Comon and published by Academic Press. This book was released on 2010-02-17 with total page 856 pages. Available in PDF, EPUB and Kindle. Book excerpt: Edited by the people who were forerunners in creating the field, together with contributions from 34 leading international experts, this handbook provides the definitive reference on Blind Source Separation, giving a broad and comprehensive description of all the core principles and methods, numerical algorithms and major applications in the fields of telecommunications, biomedical engineering and audio, acoustic and speech processing. Going beyond a machine learning perspective, the book reflects recent results in signal processing and numerical analysis, and includes topics such as optimization criteria, mathematical tools, the design of numerical algorithms, convolutive mixtures, and time frequency approaches. This Handbook is an ideal reference for university researchers, R&D engineers and graduates wishing to learn the core principles, methods, algorithms, and applications of Blind Source Separation. Covers the principles and major techniques and methods in one book Edited by the pioneers in the field with contributions from 34 of the world’s experts Describes the main existing numerical algorithms and gives practical advice on their design Covers the latest cutting edge topics: second order methods; algebraic identification of under-determined mixtures, time-frequency methods, Bayesian approaches, blind identification under non negativity approaches, semi-blind methods for communications Shows the applications of the methods to key application areas such as telecommunications, biomedical engineering, speech, acoustic, audio and music processing, while also giving a general method for developing applications