EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modern Elementary Differential Equations

Download or read book Modern Elementary Differential Equations written by Richard Bellman and published by Courier Corporation. This book was released on 1995-01-01 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed to introduce students to the theory and applications of differential equations and to help them formulate scientific problems in terms of such equations, this undergraduate-level text emphasizes applications to problems in biology, economics, engineering, and physics. This edition also includes material on discontinuous solutions, Riccati and Euler equations, and linear difference equations.

Book Modern Methods in Partial Differential Equations

Download or read book Modern Methods in Partial Differential Equations written by Martin Schechter and published by Courier Corporation. This book was released on 2014-01-15 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: When first published in 1977, this volume made recent accomplishments in its field available to advanced undergraduates and beginning graduate students of mathematics. Now it remains a permanent, much-cited contribution to the ever-expanding literature.

Book Modern Differential Equations

Download or read book Modern Differential Equations written by Martha L. Abell and published by Thomson Brooks/Cole. This book was released on 2001 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. Introduction to Differential Equations. Introduction. A Graphical Approach to Solutions: Slope Fields and Direction Fields. Summary. Review Exercises. 2. First Order Equations. Separable Equations. First-Order Linear Equations. Substitution Methods and Special Equations. Exact Equations. Theory of First-Order-Equations. Numerical Methods for First-Order Equations. Summary. Review Exercises. Differential Equations at Work. Modeling the Spread of a Disease. Linear Population Model with Harvesting. Logistic Model with Harvesting. Logistic Model with Predation. 3. Applications of First Order Equations. Population Growth and Decay. Newton's Law of Cooling and Related Problems. Free-Falling Bodies. Summary. Review Exercises. Chapter 3 Differential Equations at Work. Mathematics of Finance. Algae Growth. Dialysis. Antibiotic Production. 4. Higher Order Equations. Second-Order Equations: An Introduction. Solutions of Second-Order Linear Homogeneous Equations with Constant Coefficients. Higher Order Equations: An Introduction. Solutions to Higher Order Linear Homogeneous Equations with Constant Coefficients. Introduction to Solving Nonhomogeneous Equations with Constant Coefficients: Method of Undetermined Coefficients. Nonhomogeneous Equations with Constant Coefficients: Variation of Parameters. Cauchy-Euler Equations. Series Solutions of Ordinary Differential Equations. Summary. Review Exercises. Differential Equations at Work. Testing for Diabetes. Modeling the Motion of a Skier. The Schröinger Equation. 5. Applications of Higher Order Equations. Simple Harmonic Motion. Damped Motion. Forced Motion. Other Applications. The Pendulum Problem. Summary. Review Exercises. Differential Equations at Work. Rack-and-Gear Systems. Soft Springs. Hard Springs. Aging Springs. Bodé Plots. 6. Systems of First Order Equations. Introduction. Review of Matrix Algebra and Calculus. Preliminary Definitions and Notation. First-Order Linear Homogeneous Systems with Constant Coefficients. First-Order Linear Nonhomogeneous Systems: Undetermined Coefficients and Variation of Parameters. Phase Portraits. Nonlinear Systems. Numerical Methods. Summary. Review Exercises. Differential Equations at Work. Modeling a Fox Population in Which Rabies is Present. Controlling the Spread of Disease. FitzHugh-Nagumo Model. 7. Applications of First-Order Systems. Mechanical and Electrical Problems with First-Order Linear Systems. Diffusion and Population Problems with First-Order Linear Systems. Nonlinear Systems of Equations. Summary. Review Exercises. Differential Equations at Work. Competing Species. Food Chains. Chemical Reactor. 8. Laplace Transforms. The Laplace Transform: Preliminary Definitions and Notation. Solving Initial-Value Problems with the Laplace Transform. Laplace Transforms of Several Important Functions. The Convolution Theorem. Laplace Transform Methods for Solving Systems. Applications Using Laplace Transforms. Summary. Review Exercises. Differential Equations at Work. The Tautochrone. Vibration Absorbers. Airplane Wing. Free Vibration of a Three-Story Building. Control Systems. 9. Fourier Series. Boundary-Value Problems, Eigenvalue Problems, Sturm-Liouville Problems. Fourier Sine Series and Cosine Series. Fourier Series. Generalized Fourier Series. Summary. Review Exercises. Differential Equations at Work. Free Vibration of a Three-Story Building. Forced Damped Spring-Mass System. Approximations with Fourier Series. 10. Partial Differential Equations. Introduction to Partial Differential Equations and Separation of Variables. The One-Dimensional Heat Equation. The One-Dimensional Wave Equation. Problems in Two Dimensions: Laplace's Equation. Two-Dimensional Problems in a Circular Region. Summary. Review Exercises. Differential Equations at Work. Laplace Transforms. Waves in a Steel Rod. Media Sterilization. Numerical Methods for Solving Partial Differential Equations. Answers to Selected Questions. Index.

Book A Modern Introduction to Differential Equations

Download or read book A Modern Introduction to Differential Equations written by Henry J. Ricardo and published by Academic Press. This book was released on 2020-05 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Modern Introduction to Differential Equations, Third Edition, provides an introduction to the basic concepts of differential equations. The book begins by introducing the basic concepts of differential equations, focusing on the analytical, graphical and numerical aspects of first-order equations, including slope fields and phase lines. The comprehensive resource then covers methods of solving second-order homogeneous and nonhomogeneous linear equations with constant coefficients, systems of linear differential equations, the Laplace transform and its applications to the solution of differential equations and systems of differential equations, and systems of nonlinear equations. Throughout the text, valuable pedagogical features support learning and teaching. Each chapter concludes with a summary of important concepts, and figures and tables are provided to help students visualize or summarize concepts. The book also includes examples and updated exercises drawn from biology, chemistry, and economics, as well as from traditional pure mathematics, physics, and engineering. Offers an accessible and highly readable resource to engage students Introduces qualitative and numerical methods early to build understanding Includes a large number of exercises from biology, chemistry, economics, physics and engineering Provides exercises that are labeled based on difficulty/sophistication, end-of-chapter summaries and group projects

Book Differential Equations

Download or read book Differential Equations written by Steven G. Krantz and published by CRC Press. This book was released on 2015-10-07 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Equations: Theory, Technique, and Practice with Boundary Value Problems presents classical ideas and cutting-edge techniques for a contemporary, undergraduate-level, one- or two-semester course on ordinary differential equations. Authored by a widely respected researcher and teacher, the text covers standard topics such as partial diff

Book Modern Numerical Methods for Ordinary Differential Equations

Download or read book Modern Numerical Methods for Ordinary Differential Equations written by G. Hall and published by Oxford University Press, USA. This book was released on 1976 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ordinary Differential Equations with Modern Applications

Download or read book Ordinary Differential Equations with Modern Applications written by N. Finizio and published by Brooks/Cole. This book was released on 1989 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Differential Equations  An Introduction to Modern Methods and Applications 2e Binder Ready Version   WileyPLUS Registration Card

Download or read book Differential Equations An Introduction to Modern Methods and Applications 2e Binder Ready Version WileyPLUS Registration Card written by James R. Brannan and published by Wiley. This book was released on 2011-02-28 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This package includes a three-hole punched, loose-leaf edition of ISBN 9781118011874 and a registration code for the WileyPLUS course associated with the text. Before you purchase, check with your instructor or review your course syllabus to ensure that your instructor requires WileyPLUS. For customer technical support, please visit http://www.wileyplus.com/support. WileyPLUS registration cards are only included with new products. Used and rental products may not include WileyPLUS registration cards. The modern landscape of technology and industry demands an equally modern approach to differential equations in the classroom. Designed for a first course in differential equations, the second edition of Brannan/Boyce's Differential Equations: An Introduction to Modern Methods and Applications is consistent with the way engineers and scientists use mathematics in their daily work. The focus on fundamental skills, careful application of technology, and practice in modeling complex systems prepares students for the realities of the new millennium, providing the building blocks to be successful problem-solvers in today's workplace. The text emphasizes a systems approach to the subject and integrates the use of modern computing technology in the context of contemporary applications from engineering and science. Section exercises throughout the text provide a hands-on experience in modeling, analysis, and computer experimentation. Projects at the end of each chapter provide additional opportunities for students to explore the role played by differential equations in the sciences and engineering.

Book Systems of Ordinary Differential Equations

Download or read book Systems of Ordinary Differential Equations written by Jack Leonard Goldberg and published by HarperCollins Publishers. This book was released on 1972 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ordinary Differential Equations and Stability Theory

Download or read book Ordinary Differential Equations and Stability Theory written by David A. Sanchez and published by Courier Dover Publications. This book was released on 2019-09-18 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This brief modern introduction to the subject of ordinary differential equations emphasizes stability theory. Concisely and lucidly expressed, it is intended as a supplementary text for advanced undergraduates or beginning graduate students who have completed a first course in ordinary differential equations. The author begins by developing the notions of a fundamental system of solutions, the Wronskian, and the corresponding fundamental matrix. Subsequent chapters explore the linear equation with constant coefficients, stability theory for autonomous and nonautonomous systems, and the problems of the existence and uniqueness of solutions and related topics. Problems at the end of each chapter and two Appendixes on special topics enrich the text.

Book Ordinary Differential Equations and Dynamical Systems

Download or read book Ordinary Differential Equations and Dynamical Systems written by Gerald Teschl and published by American Mathematical Soc.. This book was released on 2012-08-30 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm-Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincare-Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman-Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale-Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Book Differential Equations  Techniques  Theory  and Applications

Download or read book Differential Equations Techniques Theory and Applications written by Barbara D. MacCluer and published by American Mathematical Soc.. This book was released on 2019-10-02 with total page 874 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Equations: Techniques, Theory, and Applications is designed for a modern first course in differential equations either one or two semesters in length. The organization of the book interweaves the three components in the subtitle, with each building on and supporting the others. Techniques include not just computational methods for producing solutions to differential equations, but also qualitative methods for extracting conceptual information about differential equations and the systems modeled by them. Theory is developed as a means of organizing, understanding, and codifying general principles. Applications show the usefulness of the subject as a whole and heighten interest in both solution techniques and theory. Formal proofs are included in cases where they enhance core understanding; otherwise, they are replaced by informal justifications containing key ideas of a proof in a more conversational format. Applications are drawn from a wide variety of fields: those in physical science and engineering are prominent, of course, but models from biology, medicine, ecology, economics, and sports are also featured. The 1,400+ exercises are especially compelling. They range from routine calculations to large-scale projects. The more difficult problems, both theoretical and applied, are typically presented in manageable steps. The hundreds of meticulously detailed modeling problems were deliberately designed along pedagogical principles found especially effective in the MAA study Characteristics of Successful Calculus Programs, namely, that asking students to work problems that require them to grapple with concepts (or even proofs) and do modeling activities is key to successful student experiences and retention in STEM programs. The exposition itself is exceptionally readable, rigorous yet conversational. Students will find it inviting and approachable. The text supports many different styles of pedagogy from traditional lecture to a flipped classroom model. The availability of a computer algebra system is not assumed, but there are many opportunities to incorporate the use of one.

Book Differential Equations  From Calculus to Dynamical Systems  Second Edition

Download or read book Differential Equations From Calculus to Dynamical Systems Second Edition written by Virginia W. Noonburg and published by American Mathematical Soc.. This book was released on 2020-08-28 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thoroughly modern textbook for the sophomore-level differential equations course. The examples and exercises emphasize modeling not only in engineering and physics but also in applied mathematics and biology. There is an early introduction to numerical methods and, throughout, a strong emphasis on the qualitative viewpoint of dynamical systems. Bifurcations and analysis of parameter variation is a persistent theme. Presuming previous exposure to only two semesters of calculus, necessary linear algebra is developed as needed. The exposition is very clear and inviting. The book would serve well for use in a flipped-classroom pedagogical approach or for self-study for an advanced undergraduate or beginning graduate student. This second edition of Noonburg's best-selling textbook includes two new chapters on partial differential equations, making the book usable for a two-semester sequence in differential equations. It includes exercises, examples, and extensive student projects taken from the current mathematical and scientific literature.

Book Notes on Diffy Qs

    Book Details:
  • Author : Jiri Lebl
  • Publisher :
  • Release : 2019-11-13
  • ISBN : 9781706230236
  • Pages : 468 pages

Download or read book Notes on Diffy Qs written by Jiri Lebl and published by . This book was released on 2019-11-13 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.

Book Differential Equations with Boundary Value Problems

Download or read book Differential Equations with Boundary Value Problems written by James R. Brannan and published by John Wiley & Sons. This book was released on 2010-11-08 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike other books in the market, this second edition presents differential equations consistent with the way scientists and engineers use modern methods in their work. Technology is used freely, with more emphasis on modeling, graphical representation, qualitative concepts, and geometric intuition than on theoretical issues. It also refers to larger-scale computations that computer algebra systems and DE solvers make possible. And more exercises and examples involving working with data and devising the model provide scientists and engineers with the tools needed to model complex real-world situations.

Book Partial Differential Equations

Download or read book Partial Differential Equations written by Avner Friedman and published by Courier Corporation. This book was released on 2008-11-24 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Largely self-contained, this three-part treatment focuses on elliptic and evolution equations, concluding with a series of independent topics directly related to the methods and results of the preceding sections. 1969 edition.

Book Introduction to Partial Differential Equations

Download or read book Introduction to Partial Differential Equations written by David Borthwick and published by Springer. This book was released on 2017-01-12 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise. Within each section the author creates a narrative that answers the five questions: What is the scientific problem we are trying to understand? How do we model that with PDE? What techniques can we use to analyze the PDE? How do those techniques apply to this equation? What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.