Download or read book Structural Concrete written by Salah El-Metwally and published by CRC Press. This book was released on 2017-10-02 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the application of strut-and-tie models (STM) for the design of structural concrete. It presents state-of-the-art information, from fundamental theories to practical engineering applications, and also provides innovative solutions for many design problems that are not otherwise achievable using the traditional methods.
Download or read book Multi Scale Modeling of Structural Concrete written by Koichi Maekawa and published by CRC Press. This book was released on 2008-11-28 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increases in computer power have now enabled engineers to combine materials science with structural mechanics in the design and the assessment of concrete structures. The techniques developed have become especially useful for the performance assessment of such structures under coupled mechanistic and environmental actions. This allows effective management of infrastructure over a much longer life cycle, thus satisfying the requirements for durability and sustainability. This ground-breaking new book draws on the fields of materials and structural mechanics in an integrated way to address the questions of management and maintenance. It proposes a realistic way of simulating both constituent materials and structural responses under external loading and under ambient conditions. Where the research literature discusses component or element technology related to performance assessment, this book uniquely covers the subject at the level of the whole system including soil foundation, showing engineers how to model changes in concrete structures over time and how to use this for decision making in infrastructure maintenance and asset management.
Download or read book Finite Element Design of Concrete Structures written by Guenter Axel Rombach and published by Thomas Telford. This book was released on 2004 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Finite Element Design of Concrete Structures: practical problems and their solutions the author addresses this blind belief in computer results by offering a useful critique that important details are overlooked due to the flood of information from the output of computer calculations. Indeed, errors in the numerical model may lead in extreme cases to structural failures as the collapse of the so-called Sleipner platform has demonstrated.
Download or read book fib Model Code for Concrete Structures 2010 written by fib - federation internationale du beton and published by John Wiley & Sons. This book was released on 2013-12-04 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: The International Federation for Structural Concrete (fib) is a pre-normative organization. 'Pre-normative' implies pioneering work in codification. This work has now been realized with the fib Model Code 2010. The objectives of the fib Model Code 2010 are to serve as a basis for future codes for concrete structures, and present new developments with regard to concrete structures, structural materials and new ideas in order to achieve optimum behaviour. The fib Model Code 2010 is now the most comprehensive code on concrete structures, including their complete life cycle: conceptual design, dimensioning, construction, conservation and dismantlement. It is expected to become an important document for both national and international code committees, practitioners and researchers. The fib Model Code 2010 was produced during the last ten years through an exceptional effort by Joost Walraven (Convener; Delft University of Technology, The Netherlands), Agnieszka Bigaj-van Vliet (Technical Secretary; TNO Built Environment and Geosciences, The Netherlands) as well as experts out of 44 countries from five continents.
Download or read book Concrete and Concrete Structures written by M. Y. H. Bangash and published by Spon Press. This book was released on 1989-01-01 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Design Of Modern Highrise Reinforced Concrete Structures written by Hiroyuki Aoyama and published by World Scientific. This book was released on 2001-12-28 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the results of a Japanese national research project carried out in 1988-1993, usually referred to as the New RC Project. Developing advanced reinforced concrete building structures with high strength and high quality materials under its auspices, the project aimed at promoting construction of highrise reinforced concrete buildings in highly seismic areas such as Japan. The project covered all the aspects of reinforced concrete structures, namely materials, structural elements, structural design, construction, and feasibility studies. In addition to presenting these results, the book includes two chapters giving an elementary explanation of modern analytical techniques, i.e. finite element analysis and earthquake response analysis.
Download or read book Durability Design of Concrete Structures written by A. Sarja and published by CRC Press. This book was released on 2004-03-01 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concrete structures can be designed for durability by applying the principles and procedures of reliability theory combined with traditional structural design. This book is the first systematic attempt to introduce into structural design a general theory of structural reliability and existing calculation models for common degradation processes. It
Download or read book Finite Element Modelling of Structural Concrete written by Michael D. Kotsovos and published by CRC Press. This book was released on 2015-05-20 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Powerful Tool for the Analysis and Design of Complex Structural ElementsFinite-Element Modelling of Structural Concrete: Short-Term Static and Dynamic Loading Conditions presents a finite-element model of structural concrete under short-term loading, covering the whole range of short-term loading conditions, from static (monotonic and cyclic) to
Download or read book Creep and Hygrothermal Effects in Concrete Structures written by Zdeněk P. Bažant and published by Springer. This book was released on 2018-01-17 with total page 960 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive treatise covers in detail practical methods of analysis as well as advanced mathematical models for structures highly sensitive to creep and shrinkage. Effective computational algorithms for century-long creep effects in structures, moisture diffusion and high temperature effects are presented. The main design codes and recommendations (including RILEM B3 and B4) are critically compared. Statistical uncertainty of century-long predictions is analyzed and its reduction by extrapolation is discussed, with emphasis on updating based on short-time tests and on long-term measurements on existing structures. Testing methods and the statistics of large randomly collected databases are critically appraised and improvements of predictions of multi-decade relaxation of prestressing steel, cyclic creep in bridges, cracking damage, etc., are demonstrated. Important research directions, such as nanomechanical and probabilistic modeling, are identified, and the need for separating the long-lasting autogenous shrinkage of modern concretes from the creep and drying shrinkage data and introducing it into practical prediction models is emphasized. All the results are derived mathematically and justified as much as possible by extensive test data. The theoretical background in linear viscoelasticity with aging is covered in detail. The didactic style makes the book suitable as a textbook. Everything is properly explained, step by step, with a wealth of application examples as well as simple illustrations of the basic phenomena which could alternate as homeworks or exams. The book is of interest to practicing engineers, researchers, educators and graduate students.
Download or read book Stringer Panel Models in Structural Concrete written by Johan Blaauwendraad and published by Springer. This book was released on 2018-06-26 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: Structural concrete designers nowadays distinguish between B-regions (named after Bernoulli beam theory) and D-regions (D standing for ‘disturbed’). They are all familiar with B-regions, but less acquainted with the expertise required for D-regions. To design D-regions, the Strut-and-Tie Model (STM) is usually applied, a model laid down worldwide in structural codes of practice. The Stringer-Panel Model (SPM) recommended here is a companion method to the STM, with the advantage of being suitable for different load cases and reversed loading. This being so, the SPM is suitable for linear-elastic analyses where durability is a key consideration, but also suits structural design for contexts of cyclical seismic activity. Finally, this book sets out how structural engineers who prefer the STM can nevertheless apply the SPM to determine a proper strut-and-tie model.
Download or read book Plasticity in Reinforced Concrete written by Wai-Fah Chen and published by J. Ross Publishing. This book was released on 2007 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: J. Ross Publishing Classics are world-renowned texts and monographs written bt preeminent scholars. These books are available to students, researchers, professionals, and libararies.
Download or read book Design of Concrete Structures with Stress Fields written by Aurello Muttoni and published by Birkhäuser. This book was released on 2012-12-06 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: 17 2 STRESS FIELDS FOR SIMPLE STRUCTURES 2. 1 INTRODUCTION In this chapter the behavior and strength of simple structures made of rein forced or prestressed concrete is investigated with the aid of stress fields. In particular, the webs and flanges of beams, simple walls, brackets, bracing beams and joints of frames are investigated. By this means, the majority of design cases are already covered. In reality, all structural components are three-dimensional. Here, however, components are considered either directly as two-dimensional plate elements (i. e. the plane stress condition with no variation of stress over the thickness of the element) or they are subdivided into several plates. Since two-dimensional structural elements are statically redundant, it is pOSSible for a particular loading to be in equilibrium with many (theoretically an infinite number of) stress states. If the lower bound method of the theory of plasticity is employed, then an admissible stress field or any combination of such stress fields may be selected. In chapter 4 it is shown that this method is suitable for the design of reinforced concrete structures, and the consequence of the choice of the final structural system on the structural behavior is dealt with in detail. The first cases of the use of this method date back to Ritter [6] and Morsch [4], who already at the beginning of the century investigated the resultants of the internal stresses by means of truss models.
Download or read book Unified Theory of Concrete Structures written by Thomas T. C. Hsu and published by John Wiley & Sons. This book was released on 2010-03-16 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unified Theory of Concrete Structures develops an integrated theory that encompasses the various stress states experienced by both RC & PC structures under the various loading conditions of bending, axial load, shear and torsion. Upon synthesis, the new rational theories replace the many empirical formulas currently in use for shear, torsion and membrane stress. The unified theory is divided into six model components: a) the struts-and-ties model, b) the equilibrium (plasticity) truss model, c) the Bernoulli compatibility truss model, d) the Mohr compatibility truss model, e) the softened truss model, and f) the softened membrane model. Hsu presents the six models as rational tools for the solution of the four basic types of stress, focusing on the significance of their intrinsic consistencies and their inter-relationships. Because of its inherent rationality, this unified theory of reinforced concrete can serve as the basis for the formulation of a universal and international design code. Includes an appendix and accompanying website hosting the authors’ finite element program SCS along with instructions and examples Offers comprehensive coverage of content ranging from fundamentals of flexure, shear and torsion all the way to non-linear finite element analysis and design of wall-type structures under earthquake loading. Authored by world-leading experts on torsion and shear
Download or read book Performance Based Seismic Design of Concrete Structures and Infrastructures written by Plevris, Vagelis and published by IGI Global. This book was released on 2017-02-14 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid design and craftsmanship are a necessity for structures and infrastructures that must stand up to natural disasters on a regular basis. Continuous research developments in the engineering field are imperative for sustaining buildings against the threat of earthquakes and other natural disasters. Performance-Based Seismic Design of Concrete Structures and Infrastructures is an informative reference source on all the latest trends and emerging data associated with structural design. Highlighting key topics such as seismic assessments, shear wall structures, and infrastructure resilience, this is an ideal resource for all academicians, students, professionals, and researchers that are seeking new knowledge on the best methods and techniques for designing solid structural designs.
Download or read book MODELING OF ASPHALT CONCRETE written by Y. Richard Kim and published by McGraw Hill Professional. This book was released on 2007-09-22 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Expert Guide to Developing More-Durable and Cost-Effective Asphalt Pavements Written by distinguished experts from countries around the world, Modeling of Asphalt Concrete presents in-depth coverage of the current materials, methods, and models used for asphalt pavements. Included is state-of-the-art information on fundamental material properties and mechanisms affecting the performance of asphalt concrete, new rheological testing and analysis techniques, constitutive models, and performance prediction methodologies for asphalt concrete and asphalt pavements. Emphasis is placed on the modeling of asphalt mixes for specific geographic/climatic requirements. In light of America's crumbling infrastructure and our heavy usage of asphalt as a paving material, this timely reference is essential for the development of more-durable and cost-effective asphalt materials for both new construction and rehabilitation. Harness the Latest Breakthroughs in Asphalt Concrete Technology: • Asphalt Rheology • Constitutive Models • Stiffness Characterization • Models for Low-Temperature Cracking • Models for Fatigue Cracking and Moisture Damage • Models for Rutting and Aging
Download or read book Modeling of Inelastic Behavior of RC Structures Under Seismic Loads written by P. Benson Shing and published by ASCE Publications. This book was released on 2001-01-01 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the U.S.?Japan Seminar on Post-Peak Behavior of Reinforced Concrete Structures Subjected to Seismic Loads: Recent Advances and Challenges on Analysis and Design, held in Tokyo and Lake Yamanaka, Japan, October 25-29, 1999. Sponsored by the National Science Foundation, U.S.A.; Japan Society for the Promotion of Science; Japan Concrete Institute. This collection presents the latest ideas and findings on the inelastic behavior of reinforced concrete (RC) structures from the analysis and design standpoints. These papers discuss state-of-the-art concrete material models and analysis methods that can be used to simulate and understand the inelastic behavior of RC structures, as well as design issues that can improve the seismic performance of these structures. Topics include modeling of concrete behavior; modeling of RC structures (finite element approach and macro-element approach); and experimental studies, analysis, and design issues.
Download or read book Concrete at High Temperatures written by Zdeněk P. Bažant and published by Prentice Hall. This book was released on 1996 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the increased use of concrete in high temperature environments, it is essential for engineers to have a knowledge of the properties and mathematical modelling of concrete in such extreme conditions. Bringing together, for the first time, vast amounts of data previously scattered throughout numerous papers and periodicals, this book provides, in two parts, a comprehensive and systematic review of both the properties and the mathematical modelling of concrete at high temperatures. Part I provides a comprehensive description of the material properties of concrete at high temperatures. Assuming only a basic knowledge of mathematics, the information is presented at an elementary level suitable for graduates of civil engineering or materials science. Part II describes the response of concrete to high temperatures in precise terms based on mathematical modelling of physical processes. Suitable for advanced graduate students, researchers and specialists, it presents detailed mathematical models of phenomena such as heat transfer, moisture diffusion, creep, volume changes, cracking and fracture. Concrete at High Temperatures will prove a valuable reference source to university researchers and graduate students in civil engineering and materials science, engineers in research laboratories, and practising engineers concerned with fire resistance, concrete structures for nuclear reactors and chemical technology vessels.