EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modelling Spark Ignition Combustion

Download or read book Modelling Spark Ignition Combustion written by P. A. Lakshminarayanan and published by Springer Nature. This book was released on with total page 678 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Engine Modeling and Simulation

Download or read book Engine Modeling and Simulation written by Avinash Kumar Agarwal and published by Springer Nature. This book was released on 2021-12-16 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the simulation and modeling of internal combustion engines. The contents include various aspects of diesel and gasoline engine modeling and simulation such as spray, combustion, ignition, in-cylinder phenomena, emissions, exhaust heat recovery. It also explored engine models and analysis of cylinder bore piston stresses and temperature effects. This book includes recent literature and focuses on current modeling and simulation trends for internal combustion engines. Readers will gain knowledge about engine process simulation and modeling, helpful for the development of efficient and emission-free engines. A few chapters highlight the review of state-of-the-art models for spray, combustion, and emissions, focusing on the theory, models, and their applications from an engine point of view. This volume would be of interest to professionals, post-graduate students involved in alternative fuels, IC engines, engine modeling and simulation, and environmental research.

Book Modelling Spark Ignition Combustion

Download or read book Modelling Spark Ignition Combustion written by P. A. Lakshminarayanan and published by Springer. This book was released on 2024-05-02 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a comprehensive overview of combustion models used in different types of spark ignition engines. In the first generation of spark ignition (SI) engines, the turbulence is created by the shear flow passing through the intake valves, and significantly decays during the intake and compression strokes. The residual turbulence enhances the laminar flame velocity, which is characteristic of the fuel and increases the relative effectiveness of the engine. In this simple two-zone model, the turbulence is estimated empirically; the spherical flame propagation model considers ignition delay, thermodynamics, heat transfer and chemical equilibrium, to obtain the performance and emissions of an SI engine. The model is used extensively by designers and research engineers to handle the fuel-air mixture prepared in the inlet and different geometries of open combustion chambers. The empiricism of the combustion model was progressively dismantled over the years. New 3D models for ignition considering the flow near a spark plug and flame propagation in the bulk gases were developed by incorporating solutions to Reynolds-averaged Navier-Stokes (RANS) equations for the turbulent flow with chemical reactions in the intense computational fluid dynamics. The models became far less empirical and enabled treating new generation direct-injection spark-ignition (DISI) gasoline and gas engines. The more complex layout of DISI engines with passive or active prechamber is successfully handled by them. This book presents details of models of SI engine combustion progressively increasing in complexity, making them accessible to designers, researchers, and even mechanical engineers who are curious to explore the field. This book is a valuable resource for anyone interested in spark ignition combustion.

Book Computer Simulation Of Spark Ignition Engine Processes

Download or read book Computer Simulation Of Spark Ignition Engine Processes written by V. Ganesan and published by Universities Press. This book was released on 1996 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the theory and computer programs for the simulation of spark ignition (SI) engine processes. It starts with the fundamental concepts and goes on to the advanced level and can thus be used by undergraduates, postgraduates and Ph. D. scholars.

Book Internal Combustion Engines

Download or read book Internal Combustion Engines written by Rowland S. Benson and published by Elsevier. This book was released on 2013-10-22 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Internal Combustion of Engines: A Detailed Introduction to the Thermodynamics of Spark and Compression Ignition Engines, Their Design and Development focuses on the design, development, and operations of spark and compression ignition engines. The book first describes internal combustion engines, including rotary, compression, and indirect or spark ignition engines. The publication then discusses basic thermodynamics and gas dynamics. Topics include first and second laws of thermodynamics; internal energy and enthalpy diagrams; gas mixtures and homocentric flow; and state equation. The text takes a look at air standard cycle and combustion in spark and compression ignition engines. Air standard cycle efficiencies; models for compression ignition combustion calculations; chemical thermodynamic models for normal combustion; and combustion-generated emissions are underscored. The publication also considers heat transfer in engines, including heat transfer in internal combustion and instantaneous heat transfer calculations. The book is a dependable reference for readers interested in spark and compression ignition engines.

Book Modelling Diesel Combustion

Download or read book Modelling Diesel Combustion written by P. A. Lakshminarayanan and published by Springer Science & Business Media. This book was released on 2010-03-03 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.

Book Modeling Engine Spray and Combustion Processes

Download or read book Modeling Engine Spray and Combustion Processes written by Gunnar Stiesch and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: The utilization of mathematical models to numerically describe the performance of internal combustion engines is of great significance in the development of new and improved engines. Today, such simulation models can already be viewed as standard tools, and their importance is likely to increase further as available com puter power is expected to increase and the predictive quality of the models is constantly enhanced. This book describes and discusses the most widely used mathematical models for in-cylinder spray and combustion processes, which are the most important subprocesses affecting engine fuel consumption and pollutant emissions. The relevant thermodynamic, fluid dynamic and chemical principles are summarized, and then the application of these principles to the in-cylinder processes is ex plained. Different modeling approaches for the each subprocesses are compared and discussed with respect to the governing model assumptions and simplifica tions. Conclusions are drawn as to which model approach is appropriate for a specific type of problem in the development process of an engine. Hence, this book may serve both as a graduate level textbook for combustion engineering stu dents and as a reference for professionals employed in the field of combustion en gine modeling. The research necessary for this book was carried out during my employment as a postdoctoral scientist at the Institute of Technical Combustion (ITV) at the Uni versity of Hannover, Germany and at the Engine Research Center (ERC) at the University of Wisconsin-Madison, USA.

Book Combustion Modeling in Reciprocating Engines

Download or read book Combustion Modeling in Reciprocating Engines written by James N. Mattair and published by Springer. This book was released on 1980 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spark Ignition Internal Combustion Engine Modelling Using Matlab

Download or read book Spark Ignition Internal Combustion Engine Modelling Using Matlab written by David R. Buttsworth and published by . This book was released on 2002 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quasi Dimensional Simulation of Spark Ignition Engines

Download or read book Quasi Dimensional Simulation of Spark Ignition Engines written by Alejandro Medina and published by Springer Science & Business Media. This book was released on 2013-08-20 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the simulations developed in research groups over the past years, Introduction to Quasi-dimensional Simulation of Spark Ignition Engines provides a compilation of the main ingredients necessary to build up a quasi-dimensional computer simulation scheme. Quasi-dimensional computer simulation of spark ignition engines is a powerful but affordable tool which obtains realistic estimations of a wide variety of variables for a simulated engine keeping insight the basic physical and chemical processes involved in the real evolution of an automotive engine. With low computational costs, it can optimize the design and operation of spark ignition engines as well as it allows to analyze cycle-to-cycle fluctuations. Including details about the structure of a complete simulation scheme, information about what kind of information can be obtained, and comparisons of the simulation results with experiments, Introduction to Quasi-dimensional Simulation of Spark Ignition Engines offers a thorough guide of this technique. Advanced undergraduates and postgraduates as well as researchers in government and industry in all areas related to applied physics and mechanical and automotive engineering can apply these tools to simulate cyclic variability, potentially leading to new design and control alternatives for lowering emissions and expanding the actual operation limits of spark ignition engines

Book Introduction to Modeling and Control of Internal Combustion Engine Systems

Download or read book Introduction to Modeling and Control of Internal Combustion Engine Systems written by Lino Guzzella and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.

Book TECHNICAL REPORT 1 SPARK IGNITION ENGINE SIMULATION MODELS

Download or read book TECHNICAL REPORT 1 SPARK IGNITION ENGINE SIMULATION MODELS written by C. BORGNAKKE, P. PUZINAUSKAS, Y. XIAO and published by . This book was released on 1986 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Combustion Engines Development

Download or read book Combustion Engines Development written by Günter P. Merker and published by Springer Science & Business Media. This book was released on 2011-09-24 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combustion Engines Development nowadays is based on simulation, not only of the transient reaction of vehicles or of the complete driveshaft, but also of the highly unsteady processes in the carburation process and the combustion chamber of an engine. Different physical and chemical approaches are described to show the potentials and limits of the models used for simulation.

Book Modeling Engine Spray and Combustion Processes

Download or read book Modeling Engine Spray and Combustion Processes written by Gunnar Stiesch and published by Springer Science & Business Media. This book was released on 2003-04-10 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The utilization of mathematical models to numerically describe the performance of internal combustion engines is of great significance in the development of new and improved engines. Today, such simulation models can already be viewed as standard tools, and their importance is likely to increase further as available com puter power is expected to increase and the predictive quality of the models is constantly enhanced. This book describes and discusses the most widely used mathematical models for in-cylinder spray and combustion processes, which are the most important subprocesses affecting engine fuel consumption and pollutant emissions. The relevant thermodynamic, fluid dynamic and chemical principles are summarized, and then the application of these principles to the in-cylinder processes is ex plained. Different modeling approaches for the each subprocesses are compared and discussed with respect to the governing model assumptions and simplifica tions. Conclusions are drawn as to which model approach is appropriate for a specific type of problem in the development process of an engine. Hence, this book may serve both as a graduate level textbook for combustion engineering stu dents and as a reference for professionals employed in the field of combustion en gine modeling. The research necessary for this book was carried out during my employment as a postdoctoral scientist at the Institute of Technical Combustion (ITV) at the Uni versity of Hannover, Germany and at the Engine Research Center (ERC) at the University of Wisconsin-Madison, USA.

Book Spark Ignition Engine Modeling and Control System Design

Download or read book Spark Ignition Engine Modeling and Control System Design written by Amir-Mohammad Shamekhi and published by CRC Press. This book was released on 2023-02-22 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a step-by-step guide to the engine control system design, providing case studies and a thorough analysis of the modeling process using machine learning, and model predictive control (MPC). Covering advanced processes alongside the theoretical foundation, MPC enables engineers to improve performance in both hybrid and non-hybrid vehicles. Control system improvement is one of the major priorities for engineers seeking to enhance an engine. Often possible on a low budget, substantial improvements can be made by applying cutting-edge methods, such as artificial intelligence when modeling engine control system designs and using MPC. This book presents approaches to control system improvement at mid, low, and high levels of control. Beginning with the model-in-the-loop hierarchical control design of ported fuel injection SI engines, this book focuses on optimal control of both transient and steady state and also discusses hardware-in-the-loop. The chapter on low-level control discusses adaptive MPC and adaptive variable functioning, as well as designing a fuel injection feed-forward controller. At mid-level control, engine calibration maps are discussed, with consideration of constraints such as limits on pollutant emissions. Finally, the high-level control methodology is discussed in detail in relation to transient torque control of SI engines. This comprehensive yet clear guide to control system improvement is an essential read for any engineer working in automotive engineering and engine control system design.

Book Engine Modeling and Control

Download or read book Engine Modeling and Control written by Rolf Isermann and published by Springer. This book was released on 2016-09-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software development - Control of gasoline engines, control of air/fuel, ignition, knock, idle, coolant, adaptive control functions - Control of diesel engines, combustion models, air flow and exhaust recirculation control, combustion-pressure-based control (HCCI), optimization of feedforward and feedback control, smoke limitation and emission control This book is an introduction to electronic engine management with many practical examples, measurements and research results. It is aimed at advanced students of electrical, mechanical, mechatronic and control engineering and at practicing engineers in the field of combustion engine and automotive engineering.