EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modelling of Micro gravity Two phase Flow Regimes

Download or read book Modelling of Micro gravity Two phase Flow Regimes written by John M. Dzenitis and published by . This book was released on 1988 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Microgravity Flow Regime Transition Modeling

Download or read book Microgravity Flow Regime Transition Modeling written by Adam Michael Shephard and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Flow regime transitions and the modeling thereof underlie the design of microgravity two-phase systems. Through the use of the zero-g laboratory, microgravity two-phase flows can be studied. Because microgravity two-phase flows exhibit essentially no accelerations (i.e. no buoyancy or gravitational forces), the effects of acceleration on two-phase flow can be decoupled from the effects of other fluid phenomenon. Two-phase systems on earth are understood mostly through empiricisms. Through microgravity two-phase research, a fundamental understanding of two-phase systems can be obtained and applied to both terrestrial systems in space applications. Physically based bubbly-bubbly/slug and bubbly/slug-slug flow regime transition models are introduced in this study. The physical nature of the models demonstrates a new understanding of the governing relationships between coalescence, turbulence, void fraction, boundary layer affects, and the inlet bubble size distribution. Significantly, the new models are dimensionless in addition to being physically derived. New and previous models are evaluated against zero-g data sets. Previous models are not accurate enough for design use. The new models proposed in this study are far more detailed than existing models and are within the precision necessary for most design purposes. Because of the limited data available, further experimental validation is necessary to formally vet the model. Zero-g data set qualification and flight experiment design have not been standardized and as a result, much of the data in the literature can be shown not to represent microgravity conditions. In this study, a set of zero-g quality criteria are developed and used to qualify the data sets available in the literature. The zero-g quality criteria include limitations on buoyancy forces relative to surface tension and inertial forces as well as requirements on acceleration monitoring and flow development length and time. The resulting evaluation of the data sets available in the literature unveils several experiment design shortfalls, which have resulted in data sets being misrepresented as zero-g data sets. The quality standards developed in this study should continue to be improved upon and used in the design of future zero-g fluid experiments. The use of one-g single-phase models in approximating zero-g two-phase experimental data was successfully performed in this study. Specifically the models for pressure drop, friction factor, wall shear, and velocity profile are demonstrated. It is recognized that the mixing apparatus will affect the flow regime transitions, specifically the distribution of bubble sizes that exit the mixing apparatus. Unfortunately, little-to-no information regarding the mixing apparatus used in past experiments can be found in the literature. This will be an area for further developmental research. In summary, the approach to understanding and modeling two-phase phenomenon demonstrated in this study provides tools to future researchers and engineers. Special attention to data qualification and experiment standardization provides a different prospective and interpretation of the currently available data. The physically based and dimensionless modeling demonstrated in this study can be extended to other studies in the field as well as providing a basis for the application of heat transfer modeling to microgravity two-phase systems, specifically boiling and condensation.

Book Two Phase Flow Modeling

    Book Details:
  • Author : National Aeronautics and Space Administration (NASA)
  • Publisher : Createspace Independent Publishing Platform
  • Release : 2018-06-12
  • ISBN : 9781721033379
  • Pages : 74 pages

Download or read book Two Phase Flow Modeling written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-12 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this report is to provide a summary of state-of-the-art predictions for two-phase flows relevant to Advanced Life Support. We strive to pick out the most used and accepted models for pressure drop and flow regime predictions. The main focus is to identify gaps in predictive capabilities in partial gravity for Lunar and Martian applications. Following a summary of flow regimes and pressure drop correlations for terrestrial and zero gravity, we analyze the fully developed annular gas-liquid flow in a straight cylindrical tube. This flow is amenable to analytical closed form solutions for the flow field and heat transfer. These solutions, valid for partial gravity as well, may be used as baselines and guides to compare experimental measurements. The flow regimes likely to be encountered in the water recovery equipment currently under consideration for space applications are provided in an appendix.Balasubramaniam, R. and Rame, E. and Kizito, J. and Kassemi, M.Glenn Research CenterFLOW DISTRIBUTION; LIFE SUPPORT SYSTEMS; TWO PHASE FLOW; LIQUID-GAS MIXTURES; TECHNOLOGY UTILIZATION; ANNULAR FLOW; HEAT TRANSFER; MARS (PLANET); PREDICTIONS; WATER RECLAMATION

Book Microgravity Two phase Flow and Heat Transfer

Download or read book Microgravity Two phase Flow and Heat Transfer written by Kamiel S. Gabriel and published by Springer Science & Business Media. This book was released on 2007-05-10 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiphase thermal systems have numerous applications in aerospace, heat-exchange, transport of contaminants in environmental systems, and energy transport and conversion systems. A reduced - or microgravity - environment provides an excellent tool for accurate study of the flow without the masking effects of gravity. This book presents for the first time a comprehensive coverage of all aspects of two-phase flow behaviour in the virtual absence of gravity.

Book Two phase flow modeling

Download or read book Two phase flow modeling written by and published by . This book was released on 2006 with total page 61 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modelling and Experimentation in Two Phase Flow

Download or read book Modelling and Experimentation in Two Phase Flow written by Volfango Bertola and published by Springer. This book was released on 2014-05-04 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an up-to-date review of recent advances in the study of two-phase flows, with focus on gas-liquid flows, liquid-liquid flows, and particle transport in turbulent flows. The book is divided into several chapters, which after introducing basic concepts lead the reader through a more complex treatment of the subjects. The reader will find an extensive review of both the older and the more recent literature, with abundance of formulas, correlations, graphs and tables. A comprehensive (though non exhaustive) list of bibliographic references is provided at the end of each chapter. The volume is especially indicated for researchers who would like to carry out experimental, theoretical or computational work on two-phase flows, as well as for professionals who wish to learn more about this topic.

Book Zero Gravity Two phase Flow Regime Transition Modeling Compared with Data and Relap5 3d Predictions

Download or read book Zero Gravity Two phase Flow Regime Transition Modeling Compared with Data and Relap5 3d Predictions written by Melissa Renee Ghrist and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis compares air/water two-phase flow regime transition models in zero gravity with data and makes recommendations for zero gravity models to incorporate into the RELAP5-3D thermal hydraulic computer code. Data from numerous researchers and experiments are compiled into a large database. A RELAP5-3D model is built to replicate the zero gravity experiments, and flow regime results from the RELAP5-3D code are compared with data. The comparison demonstrates that the current flow regime maps used in the computer code do not scale to zero gravity. A new flow regime map is needed for zero gravity conditions. Three bubbly-to-slug transition models and four slug-to-annular transition models are analyzed and compared with the data. A mathematical method is developed using least squares to objectively compare the accuracy of the models with the data. The models are graded by how well each represents the data. Agreement with data validates the recommendations made for changes to the RELAP5-3D computer code models. For smaller diameter tubes, Dukler0́9s bubbly-to-slug model best fits the data. For the larger tubes, the Drift Flux model is a better fit. The slug-to-annular transition is modeled best by Creare for small tubes and Reinarts for larger tubes. A major finding of this thesis work is that more air/water data is needed at equally distributed flow velocities and a greater variety of tube diameters. More data is specifically needed in the predicted transition regions made in this study.

Book Experimental and Analytical Study of Two Phase Flow in Zero Gravity

Download or read book Experimental and Analytical Study of Two Phase Flow in Zero Gravity written by Davood Abdollahian and published by . This book was released on 1988 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: More effective and efficient thermal transport techniques will be needed for heat rejection from equipment on satellites. Circulating two-phase fluid loops have been suggested and laboratory tested for possible application in the above areas. In comparison to a single-phase loop, the two-phase system operates at considerably smaller flow rates and maintains a tighter temperature control with higher heat transfer coefficients. However, the two-phase fluid flow regimes, pressure gradients and heat transfer coefficients must be evaluated for application in the weightless environment of an orbiting satellite. This projecting studies two-phase flow behavior under zero gravity conditions. The overall objectives of this study were to generate a data base for two-phase pressure drop and the void-quality relationship under simulated zero gravity conditions and to develop analytical models to predict these parameters for bubbly and annular flow. The simulation of zero gravity two-phase flow was achieved by using two immiscible liquids with equal densities to eliminate the buoyancy component. Although this approach does not eliminate the gravity effects, it provides a representation for void distribution in the absence of gravity. The modeling effort is limited to developing relations for the two-phase friction multiplier and void-quality relation under bubbly and annular flow conditions. The bubbly flow model is based on the assumption of local homogeneous conditions between the phases but allows for void distribution in the radial direction. Separated flow conservation equations are used, and single-phase turbulent flow eddy diffusivity relations are employed.

Book Analytical Modeling and Experimental Investigation of Interfacial Waves in Annular Microgravity Two Phase Flow

Download or read book Analytical Modeling and Experimental Investigation of Interfacial Waves in Annular Microgravity Two Phase Flow written by Vladimir Georgevich and published by . This book was released on 1991 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Studies of Two Phase Flow Dynamics and Heat Transfer at Reduced Gravity Conditions

Download or read book Studies of Two Phase Flow Dynamics and Heat Transfer at Reduced Gravity Conditions written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-07-11 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ability to predict gas-liquid flow patterns is crucial to the design and operation of two-phase flow systems in the microgravity environment. Flow pattern maps have been developed in this study which show the occurrence of flow patterns as a function of gas and liquid superficial velocities as well as tube diameter, liquid viscosity and surface tension. The results have demonstrated that the location of the bubble-slug transition is affected by the tube diameter for air-water systems and by surface tension, suggesting that turbulence-induced bubble fluctuations and coalescence mechanisms play a role in this transition. The location of the slug-annular transition on the flow pattern maps is largely unaffected by tube diameter, liquid viscosity or surface tension in the ranges tested. Void fraction-based transition criteria were developed which separate the flow patterns on the flow pattern maps with reasonable accuracy. Weber number transition criteria also show promise but further work is needed to improve these models. For annular gas-liquid flows of air-water and air- 50 percent glycerine under reduced gravity conditions, the pressure gradient agrees fairly well with a version of the Lockhart-Martinelli correlation but the measured film thickness deviates from published correlations at lower Reynolds numbers. Nusselt numbers, based on a film thickness obtained from standard normal-gravity correlations, follow the relation, Nu = A Re(sup n) Pr(exp l/3), but more experimental data in a reduced gravity environment are needed to increase the confidence in the estimated constants, A and n. In the slug flow regime, experimental pressure gradient does not correlate well with either the Lockhart-Martinelli or a homogeneous formulation, but does correlate nicely with a formulation based on a two-phase Reynolds number. Comparison with ground-based correlations implies that the heat transfer coefficients are lower at reduced gravity than at normal gravity under the same ...

Book Analytical and Experimental Study of Annular Two phase Flow Friction Pressure Drop Under Microgravity

Download or read book Analytical and Experimental Study of Annular Two phase Flow Friction Pressure Drop Under Microgravity written by Ngoc Thanh Nguyen and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-phase liquid-gas flow has a wide variety of applications in space, including active thermal control systems, high-power communications satellites, heat pumps and space nuclear reactors. Two-phase systems have many potential advantages over current single-phase systems due to reductions in system size, weight and power consumption. The mechanisms of pressure drop, heat transfer coefficients, void fractions, and flow regimes must be well understood under microgravity conditions in order to design reliable two-phase systems. The main objective of this present research is to develop a new mathematical model that can accurately predict the annular two-phase friction pressure drop to optimize the design of two-phase systems. The two-phase flow tests were conducted aboard the NASA KC-135 aircraft by the Interphase Transport Phenomena (ITP) group from Texas A & M University. The two-phase flow pressure drops were measured across a single transparent test section 12.7 mm ID and 1.63 m long in annular regimes under microgravity conditions during two flight campaigns. Different from previous work, this was the first time both the void fraction and the film thickness were measured under microgravity conditions. The empirical correlations for the interfacial friction factor and void fraction were developed from 57 experimental data using a linear least squares regression technique. The annular two-phase friction pressure drop can be predicted by the new mathematical model requiring only knowledge of the length and diameter of the tube, liquid and vapor mass flow rates, and properties of the working fluid. In addition, the new mathematical model was validated using Foster-Miller & ITP data collected over twelve flights aboard the KC-135 with working fluid R-12 (77 data points), Sundstrand data collected aboard the KC-135 with working fluid R-114 (43 data points) and Zhao and Rezkallah data aboard the KC-135 with working fluid water and air (43 data points). Compared with the LockhartMartinelli model, Wheeler model, Chen model and homogeneous model, the new mathematical model is the optimal model for predicting the two-phase friction pressure drop in annular regimes. The majority of the data falls within +-20% of the proposed correlation and the average error is 12%.

Book Microgravity Flow Pattern Identification Using Void Fraction Signals

Download or read book Microgravity Flow Pattern Identification Using Void Fraction Signals written by Luca Valota and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Knowledge of the two-phase flow state is fundamental for two-phase flow system design and operation. In traditional two-phase flow studies, the flow regime refers to the physical location of the gas and liquid in a conduit. Flow configuration is important for engineering correlations of heat and mass transfer, pressure drop, and wall shear. However, it is somewhat subjective since it is mostly defined by experimental observation, resulting in an approximate and equivocal definition. Thus, there is need for a better, objective flow regime identification. The void fraction is a key parameter in monitoring the operating state of a two-phase system and several tools have been developed in order to measure it. The purpose of this study is to use the void fraction and other parameters of the system to achieve a model for flow pattern identification. Recently, an experimental program using the Foster-Miller two-phase flow test bed and Creare Inc. capacitance void fraction sensors was conducted in the microgravity environment of the NASA KC-135 aircraft. Several data types were taken for each phase, such as flow rate, superficial velocity, density and transient void fraction at 100Hz. Several analytical approaches were pursued, including a statistical approach of the fluctuation of the void fraction, Martinelli analysis, and Drift Flux analysis, in order to reach a model for flow pattern identification in microgravity conditions. Several parameters were found to be good flow pattern identifiers such as the statistical moments variance and skewness, Signal -to- noise ratio (SNR), Half Height Value (HHV) and Linear Area Difference (LAD). Moreover, relevant conclusions were achieved using the Martinelli parameter and the Drift Flux model in microgravity conditions. These results were compared with the basic literature.

Book Encyclopedia Of Two phase Heat Transfer And Flow Ii  Special Topics And Applications  A 4 volume Set

Download or read book Encyclopedia Of Two phase Heat Transfer And Flow Ii Special Topics And Applications A 4 volume Set written by John R Thome and published by World Scientific. This book was released on 2015-08-26 with total page 1321 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the two-set series is to present a very detailed and up-to-date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods.Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condensation in plate heat exchangers. All of these chapters include the latest methods for predicting not only local heat transfer coefficients but also pressure drops.Professors and students will find this 'Encyclopedia of Two-Phase Heat Transfer and Flow' particularly exciting, as it contains authored books and thorough state-of-the-art reviews on many basic and special topics, such as numerical modeling of two-phase heat transfer and adiabatic bubbly and slug flows, the unified annular flow boiling model, flow pattern maps, condensation and boiling theories, new emerging topics, etc.

Book Two Phase Flow  Boiling  and Condensation

Download or read book Two Phase Flow Boiling and Condensation written by S. Mostafa Ghiaasiaan and published by Cambridge University Press. This book was released on 2017-01-11 with total page 1322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a comprehensive introduction to the fundamentals and applications of flow and heat transfer in conventional and miniature systems, this fully enhanced and updated edition covers all the topics essential for graduate courses on two-phase flow, boiling, and condensation. Beginning with a concise review of single-phase flow fundamentals and interfacial phenomena, detailed and clear discussion is provided on a range of topics, including two-phase hydrodynamics and flow regimes, mathematical modeling of gas-liquid two-phase flows, pool and flow boiling, flow and boiling in mini and microchannels, external and internal-flow condensation with and without noncondensables, condensation in small flow passages, and two-phase choked flow. Numerous solved examples and end-of-chapter problems that include many common design problems likely to be encountered by students, make this an essential text for graduate students. With up-to-date detail on the most recent research trends and practical applications, it is also an ideal reference for professionals and researchers in mechanical, nuclear, and chemical engineering.

Book Microgravity Research in Support of Technologies for the Human Exploration and Development of Space and Planetary Bodies

Download or read book Microgravity Research in Support of Technologies for the Human Exploration and Development of Space and Planetary Bodies written by Committee on Microgravity Research and published by National Academies Press. This book was released on 2000-07-17 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: The frontier represented by the near solar system confronts humanity with intriguing challenges and opportunities. With the inception of the Human Exploration and Development of Space (HEDS) enterprise in 1995, NASA has acknowledged the opportunities and has accepted the very significant challenges. Microgravity Research in Support of Technologies for the Human Exploration and Development of Space and Planetary Bodies was commissioned by NASA to assist it in coordinating the scientific information relevant to anticipating, identifying, and solving the technical problems that must be addressed throughout the HEDS program over the coming decades. This report assesses scientific and related technological issues facing NASA's Human Exploration and Development of Space endeavor, looking specifically at mission enabling and enhancing technologies which, for development, require an improved understanding of fluid and material behavior in a reduced gravity environment.