EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modelling in Nanoporous Shale

Download or read book Modelling in Nanoporous Shale written by Liehui Zhang and published by Springer. This book was released on 2024-10-26 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the problems involved in the modelling and simulation of shale gas reservoirs at pore scale, and details recent advances in the field. It presents the construction of simulation methods, mainly using the lattice Boltzmann method (LBM), that describe sorption, flow, and transport in nanoporous shale with some case studies. This book highlights the nanoscale effects, ascribed to the large surface-to-volume ratio, on fluids occurrence and transport physics. It discusses some interesting phenomena occurs at nanoporous shale, such as absorbed water film, water condensation, sorption hysteresis, surface excess adsorption, Knudsen diffusion, surface diffusion, structural fluid density, no-slip boundary, etc. The key techniques and methods introduced in this book provide the basis for accurate prediction of gas-well productivity. The basic principles and modeling methods are also relevant to many other nanoporous applications in science and engineering. The book aims to provide a valuable reference resource for researchers and professional scientists and engineers working on shale gas development and nanoporous media research.

Book Pore Scale Study of Gas Sorption and Transport in Shale Nanopore Systems

Download or read book Pore Scale Study of Gas Sorption and Transport in Shale Nanopore Systems written by Rui Xu (Ph. D.) and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shale gas production accounts for about 70% of the total natural gas production in the US. Yet it remains a nontrivial task to characterize the petrophysical properties of shale core samples either by experimental analysis or numerical simulations. Shale matrix has low porosity and permeability resulting from nanometer-scale pore sizes. Surface properties of shale can be quite inhomogeneous arising from complex mineralogy and diagenesis. Heterogeneous morphology and topology of the pore structure poses significant challenges on understanding fluid distribution and flow capacity. Pore scale simulations provide insight into the fundamental mechanisms of thermodynamics and hydrodynamics in tight porous materials, and can supplement experimental characterization of shale petrophysical properties (e.g. absolute/relative permeability, capillary pressure curves). However, challenges exist in creating representative pore structures tailored for specific simulation tools, incorporating the appropriate and relevant physics for the problems to be simulated, and interpreting, calibrating, or validating the simulation results. In this work, we used two types of pore scale simulation tools, namely pore network modeling (PNM) and lattice Boltzmann method (LBM), to study gas adsorption/desorption and transport behavior in shale matrix. For the first part of the work, a dual-scale PNM was integrated with lattice density functional theory (LDFT) to study nitrogen adsorption/desorption in mesoporous materials with pore sizes smaller than 200 nm. Critical pore structure parameters (i.e. porosity, pore size distribution, and pore throat connectivity) were characterized by calibrating the simulated nitrogen sorption isotherms to experimental results, and were then used to construct PNMs to study supercritical methane transport. We found that the pore structure characterization results were nonunique and highly dependent on the assumed pore shape. Scanning electron microscope (SEM) images were used to further constrain the description of pore shapes. Advection and diffusion of methane at reservoir conditions were simulated and compared, and suggestions were made regarding the choice of representative pore shape in PNMs for single phase advection/diffusion calculations. We next used LBM to study two-phase thermodynamic and hydrodynamic problems in nanopore systems in shale. Both 2D and 3D LBM models were developed with consideration of mesoscale fluid-fluid and solid-fluid interactions to model gas adsorption in complex geometries, and phase separation occurs automatically without the need to track the interface. This overcomes the pore shape deficiency of PNMs in cases where nanoporous media reconstruction exists. LBM models were then calibrated to LDFT and validated against experimental adsorption data for both subcritical and supercritical gases for the first time. We studied and compared nitrogen sorption hysteresis in two model nanopore system reconstructions representing the interparticle and intraparticle pores in shale. As another example of many possible applications of our developed model, we studied water adsorption and condensation in a reconstructed clay pore structure based on SEM image analysis, and explored the effect of surface wettability on adsorbed/condensed water distribution and connectivity. Supercritical methane flow simulations with the existence of condensed water were conducted using a 3D hydrodynamic LBM model that considers nanoscale flow physics for high Knudsen number flow. The relative permeability of methane as a function of water saturation and surface wettability was calculated and compared to available experimental data measured on geosynthetic clay liners. We demonstrated the wide applicability of our model and suggested future applications

Book Mathematical Modeling of Fluid Flow and Heat Transfer in Petroleum Industries and Geothermal Applications

Download or read book Mathematical Modeling of Fluid Flow and Heat Transfer in Petroleum Industries and Geothermal Applications written by Mehrdad Massoudi and published by MDPI. This book was released on 2020-04-16 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geothermal energy is the thermal energy generated and stored in the Earth's core, mantle, and crust. Geothermal technologies are used to generate electricity and to heat and cool buildings. To develop accurate models for heat and mass transfer applications involving fluid flow in geothermal applications or reservoir engineering and petroleum industries, a basic knowledge of the rheological and transport properties of the materials involved (drilling fluid, rock properties, etc.)—especially in high-temperature and high-pressure environments—are needed. This Special Issue considers all aspects of fluid flow and heat transfer in geothermal applications, including the ground heat exchanger, conduction and convection in porous media. The emphasis here is on mathematical and computational aspects of fluid flow in conventional and unconventional reservoirs, geothermal engineering, fluid flow, and heat transfer in drilling engineering and enhanced oil recovery (hydraulic fracturing, CO2 injection, etc.) applications.

Book Challenges in Modelling and Simulation of Shale Gas Reservoirs

Download or read book Challenges in Modelling and Simulation of Shale Gas Reservoirs written by Jebraeel Gholinezhad and published by Springer. This book was released on 2017-12-27 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the problems involved in the modelling and simulation of shale gas reservoirs, and details recent advances in the field. It discusses various modelling and simulation challenges, such as the complexity of fracture networks, adsorption phenomena, non-Darcy flow, and natural fracture networks, presenting the latest findings in these areas. It also discusses the difficulties of developing shale gas models, and compares analytical modelling and numerical simulations of shale gas reservoirs with those of conventional reservoirs. Offering a comprehensive review of the state-of-the-art in developing shale gas models and simulators in the upstream oil industry, it allows readers to gain a better understanding of these reservoirs and encourages more systematic research on efficient exploitation of shale gas plays. It is a valuable resource for researchers interested in the modelling of unconventional reservoirs and graduate students studying reservoir engineering. It is also of interest to practising reservoir and production engineers.

Book Phase Behavior

Download or read book Phase Behavior written by Curtis H. Whitson and published by Society of Petroleum Engineers. This book was released on 2000 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phase Behavior provides the reader with the tools needed to solve problems requiring a description of phase behavior and specific pressure/volume/temperature (PVT) properties.

Book Mechanism  Model  and Upscaling of the Gas Flow in Shale Matrix

Download or read book Mechanism Model and Upscaling of the Gas Flow in Shale Matrix written by Yaxiong Li and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shale gas accounts for an increasing proportion in the world,Äôs oil and gas supply, with the properties of low carbon, clean production, and huge potential for the compensation for the gradually depleted conventional resources. Due to the ubiquitous nanopores in shale matrix, the nanoscale gas flow becomes one of the most vital themes that are directly related to the formulation of shale gas development schemes, including the optimization of hydraulic fracturing, horizontal well spacing, etc. With regard to the gas flow in shale matrix, no commonly accepted consensus has been reached about the flow mechanisms to be considered, the coupled flow model in nanopores, and the upscaling method for its macroscopic form. In this chapter, the propositions of wall-associated diffusion, a physically sound flow mechanism scheme, a new coupled flow model in nanopores, the upscaling form of the proposed model, and the translation of lab-scale results into field-scale ones aim to solve the aforementioned issues. It is expected that this work will contribute to a deeper understanding of the intrinsic relationship among various flow mechanisms and the extension of the flow model to full flow regimes and to upscaling shale matrix, thus establishing a unified model for better guiding shale gas development.

Book Markov Chains

    Book Details:
  • Author : Paul A. Gagniuc
  • Publisher : John Wiley & Sons
  • Release : 2017-07-31
  • ISBN : 1119387558
  • Pages : 252 pages

Download or read book Markov Chains written by Paul A. Gagniuc and published by John Wiley & Sons. This book was released on 2017-07-31 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fascinating and instructive guide to Markov chains for experienced users and newcomers alike This unique guide to Markov chains approaches the subject along the four convergent lines of mathematics, implementation, simulation, and experimentation. It introduces readers to the art of stochastic modeling, shows how to design computer implementations, and provides extensive worked examples with case studies. Markov Chains: From Theory to Implementation and Experimentation begins with a general introduction to the history of probability theory in which the author uses quantifiable examples to illustrate how probability theory arrived at the concept of discrete-time and the Markov model from experiments involving independent variables. An introduction to simple stochastic matrices and transition probabilities is followed by a simulation of a two-state Markov chain. The notion of steady state is explored in connection with the long-run distribution behavior of the Markov chain. Predictions based on Markov chains with more than two states are examined, followed by a discussion of the notion of absorbing Markov chains. Also covered in detail are topics relating to the average time spent in a state, various chain configurations, and n-state Markov chain simulations used for verifying experiments involving various diagram configurations. • Fascinating historical notes shed light on the key ideas that led to the development of the Markov model and its variants • Various configurations of Markov Chains and their limitations are explored at length • Numerous examples—from basic to complex—are presented in a comparative manner using a variety of color graphics • All algorithms presented can be analyzed in either Visual Basic, Java Script, or PHP • Designed to be useful to professional statisticians as well as readers without extensive knowledge of probability theory Covering both the theory underlying the Markov model and an array of Markov chain implementations, within a common conceptual framework, Markov Chains: From Theory to Implementation and Experimentation is a stimulating introduction to and a valuable reference for those wishing to deepen their understanding of this extremely valuable statistical tool. Paul A. Gagniuc, PhD, is Associate Professor at Polytechnic University of Bucharest, Romania. He obtained his MS and his PhD in genetics at the University of Bucharest. Dr. Gagniuc’s work has been published in numerous high profile scientific journals, ranging from the Public Library of Science to BioMed Central and Nature journals. He is the recipient of several awards for exceptional scientific results and a highly active figure in the review process for different scientific areas.

Book A Novel Approach For the Simulation of Multiple Flow Mechanisms and Porosities in Shale Gas Reservoirs

Download or read book A Novel Approach For the Simulation of Multiple Flow Mechanisms and Porosities in Shale Gas Reservoirs written by Bicheng Yan and published by . This book was released on 2013 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt: The state of the art of modeling fluid flow in shale gas reservoirs is dominated by dual porosity models that divide the reservoirs into matrix blocks that significantly contribute to fluid storage and fracture networks which principally control flow capacity. However, recent extensive microscopic studies reveal that there exist massive micro- and nano- pore systems in shale matrices. Because of this, the actual flow mechanisms in shale reservoirs are considerably more complex than can be simulated by the conventional dual porosity models and Darcy's Law. Therefore, a model capturing multiple pore scales and flow can provide a better understanding of complex flow mechanisms occurring in these reservoirs. Through the use of a unique simulator, this research work establishes a micro-scale multiple-porosity model for fluid flow in shale reservoirs by capturing the dynamics occurring in three separate porosity systems: organic matter (mainly kerogen); inorganic matter; and natural fractures. Inorganic and organic portions of shale matrix are treated as sub-blocks with different attributes, such as wettability and pore structures. In the organic matter or kerogen, gas desorption and diffusion are the dominant physics. Since the flow regimes are sensitive to pore size, the effects of smaller pores (mainly nanopores and picopores) and larger pores (mainly micropores and nanopores) in kerogen are incorporated in the simulator. The separate inorganic sub-blocks mainly contribute to the ability to better model dynamic water behavior. The multiple porosity model is built upon a unique tool for simulating general multiple porosity systems in which several porosity systems may be tied to each other through arbitrary transfer functions and connectivities. This new model will allow us to better understand complex flow mechanisms and in turn to extend simulation to the reservoir scale including hydraulic fractures through upscaling techniques. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151163

Book Advanced Modelling with the MATLAB Reservoir Simulation Toolbox

Download or read book Advanced Modelling with the MATLAB Reservoir Simulation Toolbox written by Knut-Andreas Lie and published by Cambridge University Press. This book was released on 2021-11-25 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents advanced reservoir simulation methods used in the widely-used MRST open-source software for researchers, professionals, students.

Book Emerging Technologies in Hydraulic Fracturing and Gas Flow Modelling

Download or read book Emerging Technologies in Hydraulic Fracturing and Gas Flow Modelling written by Kenneth Imo-Imo Israel Eshiet and published by BoD – Books on Demand. This book was released on 2022-11-02 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emerging Technologies in Hydraulic Fracturing and Gas Flow Modelling features the latest strategies for exploiting depleted and unconventional petroleum rock formations as well as simulating associated gas flow mechanisms. The book covers a broad range of multivarious stimulation methods currently applied in practice. It introduces new stimulation techniques including a comprehensive description of interactions between formation/hydraulic fracturing fluids and the host rock material. It provides further insight into practices aimed at advancing the operation of hydrocarbon reservoirs and can be used either as a standalone resource or in combination with other related literature. The book can serve as a propaedeutic resource and is appropriate for those seeking rudimentary information on the exploitation of ultra-impermeable oil and gas reservoirs. Professionals and researchers in the field of petroleum, civil, oil and gas, geotechnical and geological engineering who are interested in the production of unconventional petroleum resources as well as students undertaking studies in similar subject areas will find this to be an instructional reference.

Book Kerogen

    Book Details:
  • Author : Bernard Durand
  • Publisher : Editions TECHNIP
  • Release : 1980
  • ISBN : 9782710803713
  • Pages : 560 pages

Download or read book Kerogen written by Bernard Durand and published by Editions TECHNIP. This book was released on 1980 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Shale

    Book Details:
  • Author : Thomas Dewers
  • Publisher : John Wiley & Sons
  • Release : 2019-10-02
  • ISBN : 1119066891
  • Pages : 624 pages

Download or read book Shale written by Thomas Dewers and published by John Wiley & Sons. This book was released on 2019-10-02 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in theories, methods and applications for shale resource use Shale is the dominant rock in the sedimentary record. It is also the subject of increased interest because of the growing contribution of shale oil and gas to energy supplies, as well as the potential use of shale formations for carbon dioxide sequestration and nuclear waste storage. Shale: Subsurface Science and Engineering brings together geoscience and engineering to present the latest models, methods and applications for understanding and exploiting shale formations. Volume highlights include: Review of current knowledge on shale geology Latest shale engineering methods such as horizontal drilling Reservoir management practices for optimized oil and gas field development Examples of economically and environmentally viable methods of hydrocarbon extraction from shale Discussion of issues relating to hydraulic fracking, carbon sequestration, and nuclear waste storage Book Review: I. D. Sasowsky, University of Akron, Ohio, September 2020 issue of CHOICE, CHOICE connect, A publication of the Association of College and Research Libraries, A division of the American Library Association, Connecticut, USA Shale has a long history of use as construction fill and a ceramic precursor. In recent years, its potential as a petroleum reservoir has generated renewed interest and intense scientific investigation. Such work has been significantly aided by the development of instrumentation capable of examining and imaging these very fine-grained materials. This timely multliauthor volume brings together 15 studies covering many facets of the related science. The book is presented in two sections: an overview and a second section emphasizing unconventional oil and gas. Topics covered include shale chemistry, metals content, rock mechanics, borehole stability, modeling, and fluid flow, to name only a few. The introductory chapter (24 pages) is useful and extensively referenced. The lead chapter to the second half of the book, "Characterization of Unconventional Resource Shales," provides a notably detailed analysis supporting a comprehensive production workflow. The book is richly illustrated in full color, featuring high-quality images, graphs, and charts. The extensive index provides depth of access to the volume. This work will be of special interest to a diverse group of investigators moving forward with understanding this fascinating group of rocks. Summing Up: Recommended. Upper-division undergraduates through faculty and professionals.

Book Improved Reservoir Models and Production Forecasting Techniques for Multi Stage Fractured Hydrocarbon Wells

Download or read book Improved Reservoir Models and Production Forecasting Techniques for Multi Stage Fractured Hydrocarbon Wells written by Ruud Weijermars and published by MDPI. This book was released on 2019-12-12 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: The massive increase in energy demand and the related rapid development of unconventional reservoirs has opened up exciting new energy supply opportunities along with new, seemingly intractable engineering and research challenges. The energy industry has primarily depended on a heuristic approach—rather than a systematic approach—to optimize and tackle the various challenges when developing new and improving the performance of existing unconventional reservoirs. Industry needs accurate estimations of well production performance and of the cumulative estimated ultimate reserves, accounting for uncertainty. This Special Issue presents 10 original and high-quality research articles related to the modeling of unconventional reservoirs, which showcase advanced methods for fractured reservoir simulation, and improved production forecasting techniques.

Book Advances in reservoir modeling and simulation

Download or read book Advances in reservoir modeling and simulation written by Jinze Xu and published by Frontiers Media SA. This book was released on 2023-03-24 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs

Download or read book Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs written by Jianchao Cai and published by Elsevier. This book was released on 2019-01-24 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs presents a comprehensive look at these new methods and technologies for the petrophysical characterization of unconventional reservoirs, including recent theoretical advances and modeling on fluids transport in unconventional reservoirs. The book is a valuable tool for geoscientists and engineers working in academia and industry. Many novel technologies and approaches, including petrophysics, multi-scale modelling, rock reconstruction and upscaling approaches are discussed, along with the challenge of the development of unconventional reservoirs and the mechanism of multi-phase/multi-scale flow and transport in these structures. Includes both practical and theoretical research for the characterization of unconventional reservoirs Covers the basic approaches and mechanisms for enhanced recovery techniques in unconventional reservoirs Presents the latest research in the fluid transport processes in unconventional reservoirs

Book Physics of Fluid Flow and Transport in Unconventional Reservoir Rocks

Download or read book Physics of Fluid Flow and Transport in Unconventional Reservoir Rocks written by Behzad Ghanbarian and published by John Wiley & Sons. This book was released on 2023-04-13 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics of Fluid Flow and Transport in Unconventional Reservoir Rocks Understanding and predicting fluid flow in hydrocarbon shale and other non-conventional reservoir rocks Oil and natural gas reservoirs found in shale and other tight and ultra-tight porous rocks have become increasingly important sources of energy in both North America and East Asia. As a result, extensive research in recent decades has focused on the mechanisms of fluid transfer within these reservoirs, which have complex pore networks at multiple scales. Continued research into these important energy sources requires detailed knowledge of the emerging theoretical and computational developments in this field. Following a multidisciplinary approach that combines engineering, geosciences and rock physics, Physics of Fluid Flow and Transport in Unconventional Reservoir Rocks provides both academic and industrial readers with a thorough grounding in this cutting-edge area of rock geology, combining an explanation of the underlying theories and models with practical applications in the field. Readers will also find: An introduction to the digital modeling of rocks Detailed treatment of digital rock physics, including decline curve analysis and non-Darcy flow Solutions for difficult-to-acquire measurements of key petrophysical characteristics such as shale wettability, effective permeability, stress sensitivity, and sweet spots Physics of Fluid Flow and Transport in Unconventional Reservoir Rocks is a fundamental resource for academic and industrial researchers in hydrocarbon exploration, fluid flow, and rock physics, as well as professionals in related fields.

Book Influence of Nanopores on the Transport of Gas and Gas condensate in Unconventional Resources

Download or read book Influence of Nanopores on the Transport of Gas and Gas condensate in Unconventional Resources written by Maytham I. Al Ismail and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Shale gas and liquid-rich shales have become important energy sources in the US and other parts of the world. Unlike conventional oil and gas reservoirs, unconventional shale resources contain a very heterogeneous pore system. The pore size varies between micro-, meso- and macroscales (2 nm, 2-50 nm and 50 nm). The mineral composition of shale rocks varies widely as well from clay-rich to calcite-rich. The nanoscale nature of the pores, coupled with rock mineral heterogeneity, makes the "conventional'' understanding of fluid transport in conventional reservoirs no longer suitable to explain and predict accurately the flow behavior in unconventional resources. The research work aimed to bridge the gap in the understanding of the fluid flow behavior of unconventional resources by applying various experimental and molecular simulation tools. Specifically, this research work studied how the rock (i.e. permeability), the fluid (i.e. composition and phase behavior) and the fluid-rock interactions (i.e. adsorption) all behaved with depletion in nanoporous rock formations. Several laboratory experiments and molecular simulation techniques were applied in this research work. Laboratory experiments included a gas-condensate core-flooding experiment, permeability measurements and adsorption measurements. In the core-flooding experiment, a real gas-condensate mixture obtained from the Marcellus shale play was injected into a Marcellus shale core at in-situ conditions and the composition of gas samples collected along the core was monitored during flow. To investigate the effect of rock mineralogy and pore structure on the transport mechanisms in nanoporous shale reservoirs, the permeability of Utica, Permian and Eagle Ford shale samples were measured using argon as a nonadsorbing gas and CO2 as an adsorbing gas. In addition, CO2 adsorption experiments were conducted on different shale samples in order to investigate the role of shale mineral constituents in adsorption. Moreover, molecular simulation techniques were applied to model the selective adsorption of binary hydrocarbon mixtures in carbon-based slit-pores and to estimate the shift in the critical properties of hydrocarbons due to confinement in nanometer-size pores. The molecular simulation techniques included the grand canonical Monte Carlo (GCMC) and the Gibbs ensemble Monte Carlo (GEMC). This research work revealed that clay content in shale reservoirs played a significant role in the stress-dependent permeability. For clay-rich samples, higher pore throat compressibility was observed which in turn led to higher permeability reduction with increasing effective stress compared to calcite-rich samples. Numerical simulation results showed that failing to account for stress-dependent permeability in clay-rich shale reservoirs may lead to overestimating the cumulative gas recovery by a factor of two after ten years of production. Permeability measurements with CO2 indicated that CO2 permeability decreased in comparison with the nonadsorbing gases by as high as an order of magnitude due to a combination of CO2 adsorption, sorption-induced swelling and molecular sieving effects. CO2 adsorption measurements indicated that adsorption was controlled mainly by the clay content. Clay-rich shale samples showed higher adsorption capacity compared to clay-poor shale samples. The predominant clay mineral in those shale samples was illite. The platy shape of illite provided the surface area for enhanced adsorption capacity. This study concluded that in gas-condensate systems of liquid-rich shales, the produced gas becomes leaner during production and significant volumes of condensates, which contain predominantly heavy components, are left behind in the reservoir. The gas-condensate core-flooding experiment showed that composition of the flowing mixture below the dew-point pressure contained less heavy components along the direction of flow. Molecular simulations revealed that the change in gas composition was not only due to condensate dropout and relative permeability effects, but also due to the preferential adsorption of heavy hydrocarbons over methane. This means that initial production from shale reservoirs contain both methane and other heavy components from the free phase. However, as reservoir pressure decreases, methane from the adsorbed phase starts to desorb preferentially and the adsorption sites where methane molecules used to reside start to accept heavier components. In addition, molecular simulations conducted at subcritical conditions to estimate the vapor and liquid densities of pure hydrocarbons inside 5 and 10-nm pores revealed that rock-fluid interactions in the form of adsorption caused the critical pressure and temperature of the confined molecules to decrease. This was observed clearly for methane and ethane. The decrease in the critical properties was affected by the size of the pores. For example, the estimated critical pressure and temperature of methane in 5-nm pore were lower than the critical pressure and temperature in 10-nm pore.