Download or read book Credit Risk written by Darrell Duffie and published by Princeton University Press. This book was released on 2012-01-12 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, two of America's leading economists provide the first integrated treatment of the conceptual, practical, and empirical foundations for credit risk pricing and risk measurement. Masterfully applying theory to practice, Darrell Duffie and Kenneth Singleton model credit risk for the purpose of measuring portfolio risk and pricing defaultable bonds, credit derivatives, and other securities exposed to credit risk. The methodological rigor, scope, and sophistication of their state-of-the-art account is unparalleled, and its singularly in-depth treatment of pricing and credit derivatives further illuminates a problem that has drawn much attention in an era when financial institutions the world over are revising their credit management strategies. Duffie and Singleton offer critical assessments of alternative approaches to credit-risk modeling, while highlighting the strengths and weaknesses of current practice. Their approach blends in-depth discussions of the conceptual foundations of modeling with extensive analyses of the empirical properties of such credit-related time series as default probabilities, recoveries, ratings transitions, and yield spreads. Both the "structura" and "reduced-form" approaches to pricing defaultable securities are presented, and their comparative fits to historical data are assessed. The authors also provide a comprehensive treatment of the pricing of credit derivatives, including credit swaps, collateralized debt obligations, credit guarantees, lines of credit, and spread options. Not least, they describe certain enhancements to current pricing and management practices that, they argue, will better position financial institutions for future changes in the financial markets. Credit Risk is an indispensable resource for risk managers, traders or regulators dealing with financial products with a significant credit risk component, as well as for academic researchers and students.
Download or read book Consumer Credit Models written by Lyn C. Thomas and published by OUP Oxford. This book was released on 2009-01-29 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of credit scoring - the quantitative and statistical techniques to assess the credit risks involved in lending to consumers - has been one of the most successful if unsung applications of mathematics in business for the last fifty years. Now with lenders changing their objectives from minimising defaults to maximising profits, the saturation of the consumer credit market allowing borrowers to be more discriminating in their choice of which loans, mortgages and credit cards to use, and the Basel Accord banking regulations raising the profile of credit scoring within banks there are a number of challenges that require new models that use credit scores as inputs and extensions of the ideas in credit scoring. This book reviews the current methodology and measures used in credit scoring and then looks at the models that can be used to address these new challenges. The first chapter describes what a credit score is and how a scorecard is built which gives credit scores and models how the score is used in the lending decision. The second chapter describes the different ways the quality of a scorecard can be measured and points out how some of these measure the discrimination of the score, some the probability prediction of the score, and some the categorical predictions that are made using the score. The remaining three chapters address how to use risk and response scoring to model the new problems in consumer lending. Chapter three looks at models that assist in deciding how to vary the loan terms made to different potential borrowers depending on their individual characteristics. Risk based pricing is the most common approach being introduced. Chapter four describes how one can use Markov chains and survival analysis to model the dynamics of a borrower's repayment and ordering behaviour . These models allow one to make decisions that maximise the profitability of the borrower to the lender and can be considered as part of a customer relationship management strategy. The last chapter looks at how the new banking regulations in the Basel Accord apply to consumer lending. It develops models that show how they will change the operating decisions used in consumer lending and how their need for stress testing requires the development of new models to assess the credit risk of portfolios of consumer loans rather than a models of the credit risks of individual loans.
Download or read book Credit Risk written by Niklas Wagner and published by CRC Press. This book was released on 2008-05-28 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Featuring contributions from leading international academics and practitioners, Credit Risk: Models, Derivatives, and Management illustrates how a risk management system can be implemented through an understanding of portfolio credit risks, a set of suitable models, and the derivation of reliable empirical results. Divided into six sectio
Download or read book Modelling credit derivates written by Martinus Franciscus Antonius van der Voort and published by Rozenberg Publishers. This book was released on 2004 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Credit Risk Analytics written by Bart Baesens and published by John Wiley & Sons. This book was released on 2016-10-03 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: The long-awaited, comprehensive guide to practical credit risk modeling Credit Risk Analytics provides a targeted training guide for risk managers looking to efficiently build or validate in-house models for credit risk management. Combining theory with practice, this book walks you through the fundamentals of credit risk management and shows you how to implement these concepts using the SAS credit risk management program, with helpful code provided. Coverage includes data analysis and preprocessing, credit scoring; PD and LGD estimation and forecasting, low default portfolios, correlation modeling and estimation, validation, implementation of prudential regulation, stress testing of existing modeling concepts, and more, to provide a one-stop tutorial and reference for credit risk analytics. The companion website offers examples of both real and simulated credit portfolio data to help you more easily implement the concepts discussed, and the expert author team provides practical insight on this real-world intersection of finance, statistics, and analytics. SAS is the preferred software for credit risk modeling due to its functionality and ability to process large amounts of data. This book shows you how to exploit the capabilities of this high-powered package to create clean, accurate credit risk management models. Understand the general concepts of credit risk management Validate and stress-test existing models Access working examples based on both real and simulated data Learn useful code for implementing and validating models in SAS Despite the high demand for in-house models, there is little comprehensive training available; practitioners are left to comb through piece-meal resources, executive training courses, and consultancies to cobble together the information they need. This book ends the search by providing a comprehensive, focused resource backed by expert guidance. Credit Risk Analytics is the reference every risk manager needs to streamline the modeling process.
Download or read book Data Analysis and Applications 4 written by Andreas Makrides and published by John Wiley & Sons. This book was released on 2020-04-09 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data analysis as an area of importance has grown exponentially, especially during the past couple of decades. This can be attributed to a rapidly growing computer industry and the wide applicability of computational techniques, in conjunction with new advances of analytic tools. This being the case, the need for literature that addresses this is self-evident. New publications are appearing, covering the need for information from all fields of science and engineering, thanks to the universal relevance of data analysis and statistics packages. This book is a collective work by a number of leading scientists, analysts, engineers, mathematicians and statisticians who have been working at the forefront of data analysis. The chapters included in this volume represent a cross-section of current concerns and research interests in these scientific areas. The material is divided into three parts: Financial Data Analysis and Methods, Statistics and Stochastic Data Analysis and Methods, and Demographic Methods and Data Analysis- providing the reader with both theoretical and applied information on data analysis methods, models and techniques and appropriate applications.
Download or read book Credit Risk Modeling Valuation and Hedging written by Tomasz R. Bielecki and published by Springer Science & Business Media. This book was released on 2004-01-22 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: The motivation for the mathematical modeling studied in this text on developments in credit risk research is the bridging of the gap between mathematical theory of credit risk and the financial practice. Mathematical developments are covered thoroughly and give the structural and reduced-form approaches to credit risk modeling. Included is a detailed study of various arbitrage-free models of default term structures with several rating grades.
Download or read book Frontiers in Quantitative Finance written by Rama Cont and published by John Wiley & Sons. This book was released on 2009-03-09 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Petit D'euner de la Finance–which author Rama Cont has been co-organizing in Paris since 1998–is a well-known quantitative finance seminar that has progressively become a platform for the exchange of ideas between the academic and practitioner communities in quantitative finance. Frontiers in Quantitative Finance is a selection of recent presentations in the Petit D'euner de la Finance. In this book, leading quants and academic researchers cover the most important emerging issues in quantitative finance and focus on portfolio credit risk and volatility modeling.
Download or read book Managing Portfolio Credit Risk in Banks An Indian Perspective written by Arindam Bandyopadhyay and published by Cambridge University Press. This book was released on 2016-05-09 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains how a proper credit risk management framework enables banks to identify, assess and manage the risk proactively.
Download or read book Pricing Portfolio Credit Derivatives by Means of Evolutionary Algorithms written by Svenja Hager and published by Springer Science & Business Media. This book was released on 2008-09-08 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Svenja Hager aims at pricing non-standard illiquid portfolio credit derivatives which are related to standard CDO tranches with the same underlying portfolio of obligors. Instead of assuming a homogeneous dependence structure between the default times of different obligors, as it is assumed in the standard market model, the author focuses on the use of heterogeneous correlation structures.
Download or read book Counterparty Credit Risk Modelling written by Michael Pykhtin and published by Riskbooks. This book was released on 2005-01 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: To enhance your understanding of the risk management, pricing and regulation of counterparty credit risk, this new title offers the most detailed and comprehensive coverage available. Michael Pykhtin, a globally respected expert in credit risk, has combed the industry's most important organisations to assemble a winning team of specialist contributors - presenting you with the definitive insider view.
Download or read book Quantitative Risk Management written by Alexander J. McNeil and published by Princeton University Press. This book was released on 2015-05-26 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the most comprehensive treatment of the theoretical concepts and modelling techniques of quantitative risk management. Whether you are a financial risk analyst, actuary, regulator or student of quantitative finance, Quantitative Risk Management gives you the practical tools you need to solve real-world problems. Describing the latest advances in the field, Quantitative Risk Management covers the methods for market, credit and operational risk modelling. It places standard industry approaches on a more formal footing and explores key concepts such as loss distributions, risk measures and risk aggregation and allocation principles. The book's methodology draws on diverse quantitative disciplines, from mathematical finance and statistics to econometrics and actuarial mathematics. A primary theme throughout is the need to satisfactorily address extreme outcomes and the dependence of key risk drivers. Proven in the classroom, the book also covers advanced topics like credit derivatives. Fully revised and expanded to reflect developments in the field since the financial crisis Features shorter chapters to facilitate teaching and learning Provides enhanced coverage of Solvency II and insurance risk management and extended treatment of credit risk, including counterparty credit risk and CDO pricing Includes a new chapter on market risk and new material on risk measures and risk aggregation
Download or read book Rating Based Modeling of Credit Risk written by Stefan Trueck and published by Academic Press. This book was released on 2009-01-15 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decade rating-based models have become very popular in credit risk management. These systems use the rating of a company as the decisive variable to evaluate the default risk of a bond or loan. The popularity is due to the straightforwardness of the approach, and to the upcoming new capital accord (Basel II), which allows banks to base their capital requirements on internal as well as external rating systems. Because of this, sophisticated credit risk models are being developed or demanded by banks to assess the risk of their credit portfolio better by recognizing the different underlying sources of risk. As a consequence, not only default probabilities for certain rating categories but also the probabilities of moving from one rating state to another are important issues in such models for risk management and pricing. It is widely accepted that rating migrations and default probabilities show significant variations through time due to macroeconomics conditions or the business cycle. These changes in migration behavior may have a substantial impact on the value-at-risk (VAR) of a credit portfolio or the prices of credit derivatives such as collateralized debt obligations (D+CDOs). In Rating Based Modeling of Credit Risk the authors develop a much more sophisticated analysis of migration behavior. Their contribution of more sophisticated techniques to measure and forecast changes in migration behavior as well as determining adequate estimators for transition matrices is a major contribution to rating based credit modeling. Internal ratings-based systems are widely used in banks to calculate their value-at-risk (VAR) in order to determine their capital requirements for loan and bond portfolios under Basel II One aspect of these ratings systems is credit migrations, addressed in a systematic and comprehensive way for the first time in this book The book is based on in-depth work by Trueck and Rachev
Download or read book Portfolio Risk Analysis written by Gregory Connor and published by Princeton University Press. This book was released on 2010-03-15 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Portfolio risk forecasting has been and continues to be an active research field for both academics and practitioners. Almost all institutional investment management firms use quantitative models for their portfolio forecasting, and researchers have explored models' econometric foundations, relative performance, and implications for capital market behavior and asset pricing equilibrium. Portfolio Risk Analysis provides an insightful and thorough overview of financial risk modeling, with an emphasis on practical applications, empirical reality, and historical perspective. Beginning with mean-variance analysis and the capital asset pricing model, the authors give a comprehensive and detailed account of factor models, which are the key to successful risk analysis in every economic climate. Topics range from the relative merits of fundamental, statistical, and macroeconomic models, to GARCH and other time series models, to the properties of the VIX volatility index. The book covers both mainstream and alternative asset classes, and includes in-depth treatments of model integration and evaluation. Credit and liquidity risk and the uncertainty of extreme events are examined in an intuitive and rigorous way. An extensive literature review accompanies each topic. The authors complement basic modeling techniques with references to applications, empirical studies, and advanced mathematical texts. This book is essential for financial practitioners, researchers, scholars, and students who want to understand the nature of financial markets or work toward improving them.
Download or read book Credit Correlation written by Youssef Elouerkhaoui and published by Springer. This book was released on 2017-11-15 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an advanced guide to correlation modelling for credit portfolios, providing both theoretical underpinnings and practical implementation guidance. The book picks up where pre-crisis credit books left off, offering guidance for quants on the latest tools and techniques for credit portfolio modelling in the presence of CVA (Credit Value Adjustments). Written at an advanced level, it assumes that readers are familiar with the fundamentals of credit modelling covered, for example, in the market leading books by Schonbucher (2003) and O’Kane (2008). Coverage will include the latest default correlation approaches; correlation modelling in the ‘Marshall-Olkin’ contagion framework, in the context of CVA; numerical implementation; and pricing, calibration and risk challenges. The explosive growth of credit derivatives markets in the early-to-mid 000’s was bought to a close by the 2007 financial crisis, where these instruments were held largely to blame for the economic downturn. However, in the wake of increased regulation across all financial instruments and the challenge of buying and selling bonds in large amounts, credit derivatives have once again been found to be the answer and the market has grown significantly. Written by a practitioner for practitioners, this book will also interest researchers in mathematical finance who want to understand how things happen and work ‘on the floor’. Building the reader’s knowledge from the ground up, and with numerous real life examples used throughout, this book will prove a popular reference for anyone with a mathematical mind interested credit markets.
Download or read book Dynamic Portfolio Theory and Management written by Richard E. Oberuc and published by McGraw Hill Professional. This book was released on 2004 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description
Download or read book Credit Models and the Crisis written by Damiano Brigo and published by John Wiley & Sons. This book was released on 2010-10-28 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent financial crisis has highlighted the need for better valuation models and risk management procedures, better understanding of structured products, and has called into question the actions of many financial institutions. It has become commonplace to blame the inadequacy of credit risk models, claiming that the crisis was due to sophisticated and obscure products being traded, but practitioners have for a long time been aware of the dangers and limitations of credit models. It would seem that a lack of understanding of these models is the root cause of their failures but until now little analysis had been published on the subject and, when published, it had gained very limited attention. Credit Models and the Crisis is a succinct but technical analysis of the key aspects of the credit derivatives modeling problems, tracing the development (and flaws) of new quantitative methods for credit derivatives and CDOs up to and through the credit crisis. Responding to the immediate need for clarity in the market and academic research environments, this book follows the development of credit derivatives and CDOs at a technical level, analyzing the impact, strengths and weaknesses of methods ranging from the introduction of the Gaussian Copula model and the related implied correlations to the introduction of arbitrage-free dynamic loss models capable of calibrating all the tranches for all the maturities at the same time. It also illustrates the implied copula, a method that can consistently account for CDOs with different attachment and detachment points but not for different maturities, and explains why the Gaussian Copula model is still used in its base correlation formulation. The book reports both alarming pre-crisis research and market examples, as well as commentary through history, using data up to the end of 2009, making it an important addition to modern derivatives literature. With banks and regulators struggling to fully analyze at a technical level, many of the flaws in modern financial models, it will be indispensable for quantitative practitioners and academics who want to develop stable and functional models in the future.