EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modelling Accident Tolerant Fuel Concepts

Download or read book Modelling Accident Tolerant Fuel Concepts written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The catastrophic events that occurred at the Fukushima-Daiichi nuclear power plant in 2011 have led to widespread interest in research of alternative fuels and claddings that are proposed to be accident tolerant. The United States Department of Energy (DOE) through its Nuclear Energy Advanced Modeling and Simulation (NEAMS) program has funded an Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The ATF HIP is a three-year project to perform research on two accident tolerant concepts. The final outcome of the ATF HIP will be an in-depth report to the DOE Advanced Fuels Campaign (AFC) giving a recommendation on whether either of the two concepts should be included in their lead test assembly scheduled for placement into a commercial reactor in 2022. The two ATF concepts under investigation in the HIP are uranium silicide fuel and iron-chromium-aluminum (FeCrAl) alloy cladding. Utilizing the expertise of three national laboratory participants (Idaho National Laboratory, Los Alamos National Laboratory, and Argonne National Laboratory), a comprehensive multiscale approach to modeling is being used that includes atomistic modeling, molecular dynamics, rate theory, phase-field, and fuel performance simulations. Model development and fuel performance analysis are critical since a full suite of experimental studies will not be complete before AFC must prioritize concepts for focused development. In this paper, we present simulations of the two proposed accident tolerance fuel systems: U3Si2 fuel with Zircaloy-4 cladding, and UO2 fuel with FeCrAl cladding. Sensitivity analyses are completed using Sandia National Laboratories' Dakota software to determine which input parameters (e.g., fuel specific heat) have the greatest influence on the output metrics of interest (e.g., fuel centerline temperature). We also outline the multiscale modelling approach being employed. Considerable additional work is required prior to preparing the recommendation report for the Advanced Fuels Campaign.

Book Computational Modeling Towards Accelerating Accident Tolerant Fuel Concepts and Determining In pile Fuel Behavior

Download or read book Computational Modeling Towards Accelerating Accident Tolerant Fuel Concepts and Determining In pile Fuel Behavior written by Ember Sikorski and published by . This book was released on 2021 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: "To mitigate global warming, we need to develop carbon-free ways to generate power. Nuclear energy currently generates more carbon-free power in the United States than all other sources combined at 55%. To make nuclear as viable a power source as possible, we need to maximize power density and safety. Both of these can be improved with Accident Tolerant Fuel (ATF) materials. Uranium nitride (UN), a candidate ATF material, offers high fuel economy due to its uranium density and improved safety margins from thermal properties. However, its instability in the presence of water, a reactor coolant, must be addressed. This dissertation employs Density Functional Theory-based methods to investigate the atomistic and electronic mechanisms in UN corrosion initiation. To ensure accuracy in future UN models, the effects of magnetic treatments on UN surface stability and corrosion properties are also determined. The performance of advanced nuclear materials must be tested in research reactors before they can be implemented in power reactors. To get real-time temperature data from these tests, sensors are required that can survive the high temperatures and irradiation. To meet these needs, Idaho National Laboratory has been developing High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). Towards increasing temperature resolution and in-pile lifetime, an ab initio method has been developed to predict HTIR-TC performance. The method considers the effects of composition and temperature on performance and has been validated against experiment. To predict the interaction of HTIR-TCs with research reactor coolant, corrosion and oxidation mechanisms have been investigated. By examining the diffusion behaviors of water and oxygen, recommendations are made for which thermoelement materials may be the most resistant to corrosion and/or oxidation."--Boise State University ScholarWorks.

Book Severe Accident Scoping Simulations of Accident Tolerant Fuel Concepts for BWRs

Download or read book Severe Accident Scoping Simulations of Accident Tolerant Fuel Concepts for BWRs written by and published by . This book was released on 2015 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accident-tolerant fuels (ATFs) are fuels and/or cladding that, in comparison with the standard uranium dioxide Zircaloy system, can tolerate loss of active cooling in the core for a considerably longer time period while maintaining or improving the fuel performance during normal operations [1]. It is important to note that the currently used uranium dioxide Zircaloy fuel system tolerates design basis accidents (and anticipated operational occurrences and normal operation) as prescribed by the US Nuclear Regulatory Commission. Previously, preliminary simulations of the plant response have been performed under a range of accident scenarios using various ATF cladding concepts and fully ceramic microencapsulated fuel. Design basis loss of coolant accidents (LOCAs) and station blackout (SBO) severe accidents were analyzed at Oak Ridge National Laboratory (ORNL) for boiling water reactors (BWRs) [2]. Researchers have investigated the effects of thermal conductivity on design basis accidents [3], investigated silicon carbide (SiC) cladding [4], as well as the effects of ATF concepts on the late stage accident progression [5]. These preliminary analyses were performed to provide initial insight into the possible improvements that ATF concepts could provide and to identify issues with respect to modeling ATF concepts. More recently, preliminary analyses for a range of ATF concepts have been evaluated internationally for LOCA and severe accident scenarios for the Chinese CPR1000 [6] and the South Korean OPR-1000 [7] pressurized water reactors (PWRs). In addition to these scoping studies, a common methodology and set of performance metrics were developed to compare and support prioritizing ATF concepts [8]. A proposed ATF concept is based on iron-chromium-aluminum alloys (FeCrAl) [9]. With respect to enhancing accident tolerance, FeCrAl alloys have substantially slower oxidation kinetics compared to the zirconium alloys typically employed. During a severe accident, FeCrAl would tend to generate heat and hydrogen from oxidation at a slower rate compared to the zirconium-based alloys in use today. The previous study, [2], of the FeCrAl ATF concept during station blackout (SBO) severe accident scenarios in BWRs was based on simulating short term SBO (STSBO), long term SBO (LTSBO), and modified SBO scenarios occurring in a BWR-4 reactor with MARK-I containment. The analysis indicated that FeCrAl had the potential to delay the onset of fuel failure by a few hours depending on the scenario, and it could delay lower head failure by several hours. The analysis demonstrated reduced in-vessel hydrogen production. However, the work was preliminary and was based on limited knowledge of material properties for FeCrAl. Limitations of the MELCOR code were identified for direct use in modeling ATF concepts. This effort used an older version of MELCOR (1.8.5). Since these analyses, the BWR model has been updated for use in MELCOR 1.8.6 [10], and more representative material properties for FeCrAl have been modeled. Sections 2 4 present updated analyses for the FeCrAl ATF concept response during severe accidents in a BWR. The purpose of the study is to estimate the potential gains afforded by the FeCrAl ATF concept during BWR SBO scenarios.

Book Thermal Hydraulics of Accident Tolerant Fuel Concepts and a Preliminary Demonstration of CASL s Coupled Tools for BWRs

Download or read book Thermal Hydraulics of Accident Tolerant Fuel Concepts and a Preliminary Demonstration of CASL s Coupled Tools for BWRs written by Jacob Preston Gorton and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the 2011 accident at the Daiichi nuclear power plant in Fukushima, Japan, there has been a worldwide effort to develop so-called accident tolerant fuel (ATF) technologies to enhance safety during design basis and beyond design basis accidents. Part of the ATF development effort involves replacing much of the zirconium-based materials in light water reactors (LWRs). This is due to the accelerated oxidation rate of zirconium at high temperatures potentially experienced during severe accidents, which led to the build-up of hydrogen gas and eventual explosions that occurred at the Daiichi nuclear power plant. To be considered as a possible alternative to zirconium, an ATF candidate material must not only have greater oxidation resistance but must also have equal or better performance than zirconium in reactor operations and safety. Two candidate materials that may meet these requirements are iron-chromium-aluminum (FeCrAl) alloys and silicon carbide fiber-reinforced, silicon carbide matrix composites (SiC/SiC). Two studies on ATF concepts are presented in this thesis, which focus on using computer simulations to evaluate the use of FeCrAl as the fuel rod cladding material in a pressurized water reactor (PWR) and the use of SiC/SiC as the fuel assembly channel box material in a boiling water reactor (BWR). Both of these studies are performed using computer modeling, which is one of the first steps for evaluating new design concepts and eventually integrating them into existing reactors. Developing tools that can accurately predict the performance of nuclear reactors with high fidelity is the goal of the Consortium for Advanced Simulation of Light Water Reactors (CASL). Also included in this thesis is a preliminary demonstration of neutronic-to-thermal-hydraulic coupled BWR simulations performed using the CASL tools MPACT and CTF. In the first study, a model of a PWR fuel assembly was created to predict the critical heat flux (CHF) of FeCrAl fuel rod cladding during an imposed 50% overpower condition, which may be representative of an accident condition. CHF is a critical parameter to evaluate for ATF candidate materials because reaching CHF in a fuel rod can cause a rapid increase in temperature in the reactor that may lead to bursting of the cladding and a loss of ability to cool the core. Current correlations used for predicting flow boiling CHF in reactors are not dependent on material or surface characteristics, but this study showed that preliminary pool boiling results could be used to modify existing CHF correlations to make them more applicable to a given material, such as FeCrAl. Preliminary transient flow boiling experiments are also analyzed in this thesis for Inconel 600 and Stainless Steel 316, which pave the way for future flow boiling experiments using FeCrAl. In the second study, BWR fuel assembly models were created with a SiC/SiC channel box to predict a spatial temperature and fast neutron flux distribution in the channel box. The temperature and fast flux distributions were then used as boundary conditions for a finite element model of the channel box created by Oak Ridge National Laboratory to determine the deflection of the channel box due to temperature and neutron flux gradients. It was found in this study that the deflection of the channel box, which was mainly a product of the nonuniform fast flux distribution causing a swelling gradient within the channel box, may lead to interference with control blades in BWR cores. The work presented in this thesis provides new information on two ATF concepts and helps lay the groundwork for future evaluations. Detailed computational evaluations are an important step in the progression and application of these concepts that have the potential to increase the safety of nuclear reactors. The development of high-fidelity computational tools like MPACT/CTF is important for providing accurate simulated results that can be used in advancing the development of ATF concepts.

Book Fuel Performance of Multi layered Zirconium and Silicon Carbide Based Accident Tolerant Fuel Claddings

Download or read book Fuel Performance of Multi layered Zirconium and Silicon Carbide Based Accident Tolerant Fuel Claddings written by Malik Mamoon AbdelHalim Wagih and published by . This book was released on 2018 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Accident Tolerant Fuel (ATF) program is focused on extending the time for fuel failure during postulated severe accidents compared to the standard UO2-Zr alloy fuel system. This thesis investigates the feasibility of four different cladding concepts, two of which are zirconium-alloy based and two are SiC-based. The Zirconium-alloy based claddings are 1) Zr4-Chromium coated cladding and 2) Zr4-FeCrAl coated cladding with a molybdenum interlayer (Zr4-Mo/FeCrAl). The SiC-based claddings are 3) composite SiC coated with chromium (SiC/SiC-Cr) and 4) Three layered SiC cladding consisting of inner and outer monolith with a composite layer sandwiched in between (mSiC-SiC/SiC-mSiC). The coated claddings were kept to a 50[mu]m of coating thicknesses, deducted from the base layer thicknesses. The claddings were studied, using the multi-physics fuel performance tool MOOSE/BISON, under steady-state PWR operating conditions as well as two transients: power ramp and loss-of-coolant accident (LOCA). The major finding is that the chromium coated concepts proved to be the most promising in both Zr4 and SiC based claddings. The three layered SiC cladding showed a high probability of failure during normal operation and transient conditions, while the Zr4-Mo/FeCrAl cladding showed high plastic strains in the molybdenum layer making its possibilities of survival questionable. On the other hand, the Zr4-Cr and SiC/SiC-Cr concepts showed acceptable plastic strains for the chromium coatings, with the SiC/SiC-Cr being more advantageous during LOCA scenarios. Both concepts warrant further experimental investigation as well as modelling of beyond design-basis accidents.

Book State of the Art Report on Light Water Reactor Accident Tolerant Fuels

Download or read book State of the Art Report on Light Water Reactor Accident Tolerant Fuels written by Nuclear Energy Agency and published by . This book was released on 2018 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of a broader spectrum of collaborative activities underpinning nuclear materials research, the Nuclear Energy Agency is supporting worldwide efforts towards the development of advanced materials, including fuels for partitioning and transmutation purposes and accident-tolerant fuels (ATFs). This state-of-the-art report on ATFs results from the collective work of experts from 35 institutions in 14 NEA member countries, alongside invited technical experts from the People's Republic of China. It represents a shared and consensual position, based on expert judgment, concerning the scientific and technological knowledge related to ATFs. The report reviews available information on the most promising fuels and cladding concepts in terms of properties, experimental data and modelling results, as well as ongoing research and development activities. It also includes a description of illustrative accident scenarios that may be adopted to assess the potential performance enhancement of ATFs relative to the current standard fuel systems in accident conditions, a definition of the technology readiness levels applicable to ATFs, a survey of available modelling and simulation tools (fuel performance and severe accident analysis codes), and the experimental facilities available to support the development of ATF concepts. The information included in this report will be useful for national programmes and industrial stakeholders as an input to setting priorities, and helping them to choose the most appropriate technology based on their specific strategy, business case and deployment schedules.

Book Accident Tolerant Materials for Light Water Reactor Fuels

Download or read book Accident Tolerant Materials for Light Water Reactor Fuels written by Raul B. Rebak and published by Elsevier. This book was released on 2020-01-10 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accident Tolerant Materials for Light Water Reactor Fuels provides a description of what an accident tolerant fuel is and the benefits and detriments of each concept. The book begins with an introduction to nuclear power as a renewable energy source and the current materials being utilized in light water reactors. It then moves on to discuss the recent advancements being made in accident tolerant fuels, reviewing the specific materials, their fabrication and implementation, environmental resistance, irradiation behavior, and licensing requirements. The book concludes with a look to the future of new power generation technologies. It is written for scientists and engineers working in the nuclear power industry and is the first comprehensive work on this topic. Introduces the fundamental description of accident tolerant fuel, including fabrication and implementation Describes both the benefits and detriments of the various Accident Tolerant Fuel concepts Includes information on the process of materials selection with a discussion of how and why specific materials were chosen, as well as why others failed

Book Light Water Reactor Accident Tolerant Fuels Irradiation Testing

Download or read book Light Water Reactor Accident Tolerant Fuels Irradiation Testing written by and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of Accident Tolerant Fuels (ATF) experiments is to test novel fuel and cladding concepts designed to replace the current zirconium alloy uranium dioxide (UO2) fuel system. The objective of this Research and Development (R & D) is to develop novel ATF concepts that will be able to withstand loss of active cooling in the reactor core for a considerably longer time period than the current fuel system while maintaining or improving the fuel performance during normal operations, operational transients, design basis, and beyond design basis events. It was necessary to design, analyze, and fabricate drop-in capsules to meet the requirements for testing under prototypic LWR temperatures in Idaho National Laboratory's Advanced Test Reactor (ATR). Three industry led teams and one DOE team from Oak Ridge National Laboratory provided fuel rodlet samples for their new concepts for ATR insertion in 2015. As-built projected temperature calculations were performed on the ATF capsules using the BISON fuel performance code. BISON is an application of INL's Multi-physics Object Oriented Simulation Environment (MOOSE), which is a massively parallel finite element based framework used to solve systems of fully coupled nonlinear partial differential equations. Both 2D and 3D models were set up to examine cladding and fuel performance.

Book Proceedings of the 23rd Pacific Basin Nuclear Conference  Volume 3

Download or read book Proceedings of the 23rd Pacific Basin Nuclear Conference Volume 3 written by Chengmin Liu and published by Springer Nature. This book was released on 2023-05-09 with total page 1260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the third in a series of three volumes of proceedings of the 23rd Pacific Basin Nuclear Conference (PBNC 2022) which was held by Chinese Nuclear Society. As one in the most important and influential conference series of nuclear science and technology, the 23rd PBNC was held in Beijing and Chengdu, China in 2022 with the theme “Nuclear Innovation for Zero-carbon Future”. For taking solid steps toward the goals of achieving peak carbon emissions and carbon neutrality, future-oriented nuclear energy should be developed in an innovative way for meeting global energy demands and coordinating the deployment mechanism. It brought together outstanding nuclear scientists and technical experts, senior industry executives, senior government officials and international energy organization leaders from all across the world. The proceedings highlight the latest scientific, technological and industrial advances in Nuclear Safety and Security, Operations and Maintenance, New Builds, Waste Management, Spent Fuel, Decommissioning, Supply Capability and Quality Management, Fuel Cycles, Digital Reactor and New Technology, Innovative Reactors and New Applications, Irradiation Effects, Public Acceptance and Education, Economics, Medical and Biological Applications, and also the student program that intends to raise students’ awareness in fully engaging in this career and keep them updated on the current situation and future trends. These proceedings are not only a good summary of the new developments nuclear science and technology, but also a useful guideline for the researchers, engineers and graduate students.

Book Multi Physics and Multi Scale Modeling and Simulation Methods for Nuclear Reactor Application

Download or read book Multi Physics and Multi Scale Modeling and Simulation Methods for Nuclear Reactor Application written by Xingjie Peng and published by Frontiers Media SA. This book was released on 2024-02-28 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: A nuclear reactor operates in an environment where complex multi-physics and multi-scale phenomena exist, and it requires consideration of coupling among neutronics, thermal hydraulics, fuel performance, chemical dynamics, and coupling between the reactor core and first circuit. Safe, reliable, and economical operation can be achieved by leveraging high-fidelity numerical simulation, and proper considerations for coupling among different physics and required to provide powerful numerical simulation tools. In the past simplistic models for some of the physics phenomena are used, with the recent development of advanced numerical methods, software design, and high-performance computing power, the appeal of multi-physics and multi-scale modeling and simulation has been broadened.

Book Status Report on Activities of the Systems Assessment Task Force  OECD NEA Expert Group on Accident Tolerant Fuels for LWRs

Download or read book Status Report on Activities of the Systems Assessment Task Force OECD NEA Expert Group on Accident Tolerant Fuels for LWRs written by and published by . This book was released on 2015 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Organization for Economic Cooperation and Development /Nuclear Energy Agency (OECD/NEA) Nuclear Science Committee approved the formation of an Expert Group on Accident Tolerant Fuel (ATF) for LWRs (EGATFL) in 2014. Chaired by Kemal Pasamehmetoglu, INL Associate Laboratory Director for Nuclear Science and Technology, the mandate for the EGATFL defines work under three task forces: (1) Systems Assessment, (2) Cladding and Core Materials, and (3) Fuel Concepts. Scope for the Systems Assessment task force includes definition of evaluation metrics for ATF, technology readiness level definition, definition of illustrative scenarios for ATF evaluation, parametric studies, and selection of system codes. The Cladding and Core Materials and Fuel Concepts task forces will identify gaps and needs for modeling and experimental demonstration; define key properties of interest; identify the data necessary to perform concept evaluation under normal conditions and illustrative scenarios; identify available infrastructure (internationally) to support experimental needs; and make recommendations on priorities. Where possible, considering proprietary and other export restrictions (e.g., International Traffic in Arms Regulations), the Expert Group will facilitate the sharing of data and lessons learned across the international group membership. The Systems Assessment Task Force is chaired by Shannon Bragg-Sitton (INL), while the Cladding Task Force will be chaired by a representative from France (Marie Moatti, Electricite de France [EdF]) and the Fuels Task Force will be chaired by a representative from Japan (Masaki Kurata, Japan Atomic Energy Agency [JAEA]). This report provides an overview of the Systems Assessment Task Force charter and status of work accomplishment.

Book Nuclear Fuel Safety Criteria

Download or read book Nuclear Fuel Safety Criteria written by OECD Nuclear Energy Agency and published by OECD Publishing. This book was released on 2001 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents brief descriptions of 20 fuel-related safety criteria along with both the rationale for having such criteria and possible new design and operational issues which could have an effect on them.

Book TMS 2020 149th Annual Meeting   Exhibition Supplemental Proceedings

Download or read book TMS 2020 149th Annual Meeting Exhibition Supplemental Proceedings written by The Minerals, Metals & Materials Society and published by Springer Nature. This book was released on 2020-02-13 with total page 2046 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection presents papers from the 149th Annual Meeting & Exhibition of The Minerals, Metals & Materials Society.

Book Modelling of Fuel Behaviour in Design Basis Accidents and Design Extension Conditions

Download or read book Modelling of Fuel Behaviour in Design Basis Accidents and Design Extension Conditions written by International Atomic Energy Agency and published by . This book was released on 2020-07-30 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication is the result of an IAEA technical meeting and reports on Member States' capabilities in modelling, predicting and improving their understanding of the behaviour of nuclear fuel under accident conditions. The main results and outcomes of a coordinated research project (CRP) on this topic are also presented.

Book Proceedings of the 2023 Water Reactor Fuel Performance Meeting

Download or read book Proceedings of the 2023 Water Reactor Fuel Performance Meeting written by Jianqiao Liu and published by Springer Nature. This book was released on 2023-11-30 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Water Reactor Fuel Performance Meeting (WRFPM) held in Asia has merged with TopFuel in Europe and LWR Fuel Performance in the United States to form the globally most influential conference in the field of nuclear fuel research. WRFPM2023 is organized by Chinese Nuclear Society (CNS) in cooperation with the Atomic Energy Society of Japan (AESJ), Korean Nuclear Society (KNS), European Nuclear Society (ENS), American Nuclear Society (ANS), the Interna-tional Atomic Energy Agency (IAEA) with the support from China Nuclear Energy In¬dustry Corporation (CNEIC) and TVEL. Conference Topics: 1. Advances in water reactor fuel technology and testing 2. Operation and experience 3. Transient and off-normal fuel behaviour and safety related issues 4. Fuel cycle, used fuel storage and transportation 5. Innovative fuel and related issues 6. Fuel modelling, analysis and methodology

Book Design basis Accident Analysis Methods For Light water Nuclear Power Plants

Download or read book Design basis Accident Analysis Methods For Light water Nuclear Power Plants written by Robert Martin and published by World Scientific. This book was released on 2019-02-13 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book captures the principles of safety evaluation as practiced in the regulated light-water reactor nuclear industry, as established and stabilized over the last 30 years. It is expected to serve both the current industry and those planning for the future. The work's coverage of the subject matter is the broadest to date, including not only the common topics of modeling and simulation, but also methods supporting the basis for the underlying assumptions, the extension to radiological safety, what to expect in a licensing review, historical perspectives and the implication for new designs.This text is an essential resource for practitioners and students, on the current best-practices in nuclear power plant safety and their basis. Contributors of this work are subject matter experts in their specialties, much of which was nurtured and inspired by Prof. Larry Hochreiter, a prominent nuclear safety pioneer.Related Link(s)