EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modeling of a Two stroke Engine Scavenging Cycle with KIVA 2x3

Download or read book Modeling of a Two stroke Engine Scavenging Cycle with KIVA 2x3 written by Douglas J. Lofgren and published by . This book was released on 1995 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Simulation of the Scavenging Process in Two Stroke Engines

Download or read book Simulation of the Scavenging Process in Two Stroke Engines written by María Isabel Lamas Galdo and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling Engine Spray and Combustion Processes

Download or read book Modeling Engine Spray and Combustion Processes written by Gunnar Stiesch and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: The utilization of mathematical models to numerically describe the performance of internal combustion engines is of great significance in the development of new and improved engines. Today, such simulation models can already be viewed as standard tools, and their importance is likely to increase further as available com puter power is expected to increase and the predictive quality of the models is constantly enhanced. This book describes and discusses the most widely used mathematical models for in-cylinder spray and combustion processes, which are the most important subprocesses affecting engine fuel consumption and pollutant emissions. The relevant thermodynamic, fluid dynamic and chemical principles are summarized, and then the application of these principles to the in-cylinder processes is ex plained. Different modeling approaches for the each subprocesses are compared and discussed with respect to the governing model assumptions and simplifica tions. Conclusions are drawn as to which model approach is appropriate for a specific type of problem in the development process of an engine. Hence, this book may serve both as a graduate level textbook for combustion engineering stu dents and as a reference for professionals employed in the field of combustion en gine modeling. The research necessary for this book was carried out during my employment as a postdoctoral scientist at the Institute of Technical Combustion (ITV) at the Uni versity of Hannover, Germany and at the Engine Research Center (ERC) at the University of Wisconsin-Madison, USA.

Book Simulation of the Scavenging Process in Two Stroke Engines

Download or read book Simulation of the Scavenging Process in Two Stroke Engines written by María Isabel Lamas and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulation of the Scavenging Process in Two-Stroke Engines.

Book The Basic Design of Two Stroke Engines

Download or read book The Basic Design of Two Stroke Engines written by Gordon P Blair and published by SAE International. This book was released on 1990-01-01 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: This informative publication is a hands-on reference source for the design of two-stroke engines. The state-of-the-art is presented in such design areas as unsteady gas dynamics, scavenging, combustion, emissions and silencing. In addition, this comprehensive publication features a computer program appendix of 28 design programs, allowing the reader to recreate the applications described in the book. The Basic Design of Two-Stroke Engines offers practical assistance in improving both the mechanical and performance design of this intriguing engine. Organized into eight information-packed chapters, contents of this publication include: Introduction to the Two-Stroke Engine Gas Flow Through Two-Stroke Engines Scavenging the Two-Stroke Engine Combustion in Two-Stroke Engines Computer Modelling of Engines Empirical Assistance for the Designer Reduction of Fuel Consumption and Exhaust Emissions Reduction of Noise Emission from Two-Stroke Engines

Book Modeling and Control of EGR on Marine Two Stroke Diesel Engines

Download or read book Modeling and Control of EGR on Marine Two Stroke Diesel Engines written by Xavier Llamas and published by Linköping University Electronic Press. This book was released on 2018-02-20 with total page 48 pages. Available in PDF, EPUB and Kindle. Book excerpt: The international marine shipping industry is responsible for the transport of around 90% of the total world trade. Low-speed two-stroke diesel engines usually propel the largest trading ships. This engine type choice is mainly motivated by its high fuel efficiency and the capacity to burn cheap low-quality fuels. To reduce the marine freight impact on the environment, the International Maritime Organization (IMO) has introduced stricter limits on the engine pollutant emissions. One of these new restrictions, named Tier III, sets the maximum NOx emissions permitted. New emission reduction technologies have to be developed to fulfill the Tier III limits on two-stroke engines since adjusting the engine combustion alone is not sufficient. There are several promising technologies to achieve the required NOx reductions, Exhaust Gas Recirculation (EGR) is one of them. For automotive applications, EGR is a mature technology, and many of the research findings can be used directly in marine applications. However, there are some differences in marine two-stroke engines, which require further development to apply and control EGR. The number of available engines for testing EGR controllers on ships and test beds is low due to the recent introduction of EGR. Hence, engine simulation models are a good alternative for developing controllers, and many different engine loading scenarios can be simulated without the high costs of running real engine tests. The primary focus of this thesis is the development and validation of models for two-stroke marine engines with EGR. The modeling follows a Mean Value Engine Model (MVEM) approach, which has a low computational complexity and permits faster than real-time simulations suitable for controller testing. A parameterization process that deals with the low measurement data availability, compared to the available data on automotive engines, is also investigated and described. As a result, the proposed model is parameterized to two different two-stroke engines showing a good agreement with the measurements in both stationary and dynamic conditions. Several engine components have been developed. One of these is a new analytic in-cylinder pressure model that captures the influence of the injection and exhaust valve timings without increasing the simulation time. A new compressor model that can extrapolate to low speeds and pressure ratios in a physically sound way is also described. This compressor model is a requirement to be able to simulate low engine loads. Moreover, a novel parameterization algorithm is shown to handle well the model nonlinearities and to obtain a good model agreement with a large number of tested compressor maps. Furthermore, the engine model is complemented with dynamic models for ship and propeller to be able to simulate transient sailing scenarios, where good EGR controller performance is crucial. The model is used to identify the low load area as the most challenging for the controller performance, due to the slower engine air path dynamics. Further low load simulations indicate that sensor bias can be problematic and lead to an undesired black smoke formation, while errors in the parameters of the controller flow estimators are not as critical. This result is valuable because for a newly built engine a proper sensor setup is more straightforward to verify than to get the right parameters for the flow estimators.

Book Design and Simulation of Two Stroke Engines

Download or read book Design and Simulation of Two Stroke Engines written by Gordon Blair and published by SAE International. This book was released on 1996-02-01 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design and Simulation of Two-Stroke Engines is a unique hands-on information source. The author, having designed and developed many two-stroke engines, offers practical and empirical assistance to the engine designer on many topics ranging from porting layout, to combustion chamber profile, to tuned exhaust pipes. The information presented extends from the most fundamental theory to pragmatic design, development, and experimental testing issues. Chapters cover: Introduction to the Two-Stroke Engine Combustion in Two-Stroke Engines Computer Modeling of Engines Reduction of Fuel Consumption and Exhaust Emissions Reduction of Noise Emission from Two-Stroke Engines and more

Book Characterization of the Scavenging Efficiency in a Direct injection Two stroke Engine

Download or read book Characterization of the Scavenging Efficiency in a Direct injection Two stroke Engine written by David Michael Bevan and published by . This book was released on 2000 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Two Stroke Cycle Engine

Download or read book Two Stroke Cycle Engine written by JohnB. Heywood and published by Routledge. This book was released on 2017-11-01 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the two-stroke cycle internal combustion engine, used in compact, lightweight form in everything from motorcycles to chainsaws to outboard motors, and in large sizes for marine propulsion and power generation. It first provides an overview of the principles, characteristics, applications, and history of the two-stroke cycle engine, followed by descriptions and evaluations of various types of models that have been developed to predict aspects of two-stroke engine operation.

Book Advances on Mechanics  Design Engineering and Manufacturing

Download or read book Advances on Mechanics Design Engineering and Manufacturing written by Benoit Eynard and published by Springer. This book was released on 2016-09-02 with total page 1208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers papers presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2016), held on 14-16 September, 2016, in Catania, Italy. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is divided into eight main sections, reflecting the focus and primary themes of the conference. The contributions presented here will not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of the methods discussed, and future interdisciplinary collaborations.

Book Emissions from Two Stroke Engines

Download or read book Emissions from Two Stroke Engines written by Marco Nuti and published by SAE International. This book was released on 1998-10-01 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In the design of new CI engines, it is of paramount importance to reduce the pollutants and fuel consumption," writes author Marco Nuti. In this, the first book devoted entirely to exhaust emissions from two-stroke engines, Nuti examines the technical design issues that will determine how long the two-stroke engine survives into the twenty-first century. Dr. Nuti, director of Technical Innovation at Piaggio, thoroughly explores pollutant formation and control from unburned hydrocarbon emissions, carbon monoxide emissions, catalytic aftertreatment, and secondary air addition.