EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modeling Survival Data  Extending the Cox Model

Download or read book Modeling Survival Data Extending the Cox Model written by Terry M. Therneau and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for statistical practitioners, particularly those who design and analyze studies for survival and event history data. Building on recent developments motivated by counting process and martingale theory, it shows the reader how to extend the Cox model to analyze multiple/correlated event data using marginal and random effects. The focus is on actual data examples, the analysis and interpretation of results, and computation. The book shows how these new methods can be implemented in SAS and S-Plus, including computer code, worked examples, and data sets.

Book Modeling Survival Data Using Frailty Models

Download or read book Modeling Survival Data Using Frailty Models written by David D. Hanagal and published by Springer Nature. This book was released on 2019-11-16 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the basic concepts of survival analysis and frailty models, covering both fundamental and advanced topics. It focuses on applications of statistical tools in biology and medicine, highlighting the latest frailty-model methodologies and applications in these areas. After explaining the basic concepts of survival analysis, the book goes on to discuss shared, bivariate, and correlated frailty models and their applications. It also features nine datasets that have been analyzed using the R statistical package. Covering recent topics, not addressed elsewhere in the literature, this book is of immense use to scientists, researchers, students and teachers.

Book Applied Survival Analysis

Download or read book Applied Survival Analysis written by David W. Hosmer, Jr. and published by John Wiley & Sons. This book was released on 2011-09-23 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: THE MOST PRACTICAL, UP-TO-DATE GUIDE TO MODELLING AND ANALYZING TIME-TO-EVENT DATA—NOW IN A VALUABLE NEW EDITION Since publication of the first edition nearly a decade ago, analyses using time-to-event methods have increase considerably in all areas of scientific inquiry mainly as a result of model-building methods available in modern statistical software packages. However, there has been minimal coverage in the available literature to9 guide researchers, practitioners, and students who wish to apply these methods to health-related areas of study. Applied Survival Analysis, Second Edition provides a comprehensive and up-to-date introduction to regression modeling for time-to-event data in medical, epidemiological, biostatistical, and other health-related research. This book places a unique emphasis on the practical and contemporary applications of regression modeling rather than the mathematical theory. It offers a clear and accessible presentation of modern modeling techniques supplemented with real-world examples and case studies. Key topics covered include: variable selection, identification of the scale of continuous covariates, the role of interactions in the model, assessment of fit and model assumptions, regression diagnostics, recurrent event models, frailty models, additive models, competing risk models, and missing data. Features of the Second Edition include: Expanded coverage of interactions and the covariate-adjusted survival functions The use of the Worchester Heart Attack Study as the main modeling data set for illustrating discussed concepts and techniques New discussion of variable selection with multivariable fractional polynomials Further exploration of time-varying covariates, complex with examples Additional treatment of the exponential, Weibull, and log-logistic parametric regression models Increased emphasis on interpreting and using results as well as utilizing multiple imputation methods to analyze data with missing values New examples and exercises at the end of each chapter Analyses throughout the text are performed using Stata® Version 9, and an accompanying FTP site contains the data sets used in the book. Applied Survival Analysis, Second Edition is an ideal book for graduate-level courses in biostatistics, statistics, and epidemiologic methods. It also serves as a valuable reference for practitioners and researchers in any health-related field or for professionals in insurance and government.

Book Dynamic Regression Models for Survival Data

Download or read book Dynamic Regression Models for Survival Data written by Torben Martinussen and published by Springer Science & Business Media. This book was released on 2007-11-24 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies and applies modern flexible regression models for survival data with a special focus on extensions of the Cox model and alternative models with the aim of describing time-varying effects of explanatory variables. Use of the suggested models and methods is illustrated on real data examples, using the R-package timereg developed by the authors, which is applied throughout the book with worked examples for the data sets.

Book Modelling Survival Data in Medical Research

Download or read book Modelling Survival Data in Medical Research written by David Collett and published by . This book was released on 1993 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data collected on the time to an event-such as the death of a patient in a medical study-is known as survival data. The methods for analyzing survival data can also be used to analyze data on the time to events such as the recurrence of a disease or relief from symptoms. Modelling Survival Data in Medical Research begins with an introduction to survival analysis and a description of four studies in which survival data was obtained. These and other data sets are then used to illustrate the techniques presented in the following chapters, including the Cox and Weibull proportional hazards models; accelerated failure time models; models with time-dependent variables; interval-censored survival data; model checking; and use of statistical packages. Designed for statisticians in the pharmaceutical industry and medical research institutes, and for numerate scientists and clinicians analyzing their own data sets, this book also meets the need for an intermediate text which emphasizes the application of the methodology to survival data arising from medical studies.

Book Survival Analysis

    Book Details:
  • Author : Xian Liu
  • Publisher : John Wiley & Sons
  • Release : 2012-06-13
  • ISBN : 1118307674
  • Pages : 433 pages

Download or read book Survival Analysis written by Xian Liu and published by John Wiley & Sons. This book was released on 2012-06-13 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Survival analysis concerns sequential occurrences of events governed by probabilistic laws. Recent decades have witnessed many applications of survival analysis in various disciplines. This book introduces both classic survival models and theories along with newly developed techniques. Readers will learn how to perform analysis of survival data by following numerous empirical illustrations in SAS. Survival Analysis: Models and Applications: Presents basic techniques before leading onto some of the most advanced topics in survival analysis. Assumes only a minimal knowledge of SAS whilst enabling more experienced users to learn new techniques of data input and manipulation. Provides numerous examples of SAS code to illustrate each of the methods, along with step-by-step instructions to perform each technique. Highlights the strengths and limitations of each technique covered. Covering a wide scope of survival techniques and methods, from the introductory to the advanced, this book can be used as a useful reference book for planners, researchers, and professors who are working in settings involving various lifetime events. Scientists interested in survival analysis should find it a useful guidebook for the incorporation of survival data and methods into their projects.

Book Modelling Survival Data in Medical Research

Download or read book Modelling Survival Data in Medical Research written by D. Collett and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Fourth edition has new chapters on Bayesian survival analysis and use of the R software. Chapters extensively revised, expanded to add new material on topics that include methods for assessing predictive ability of a model, joint models for longitudinal and survival data, modern methods for the analysis of interval-censored survival data"--

Book Survival Models and Data Analysis

Download or read book Survival Models and Data Analysis written by Regina C. Elandt-Johnson and published by John Wiley & Sons. This book was released on 2014-11-05 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Survival analysis deals with the distribution of life times, essentially the times from an initiating event such as birth or the start of a job to some terminal event such as death or pension. This book, originally published in 1980, surveys and analyzes methods that use survival measurements and concepts, and helps readers apply the appropriate method for a given situation. Four broad sections cover introductions to data, univariate survival function, multiple-failure data, and advanced topics.

Book Survival Analysis

    Book Details:
  • Author : David G. Kleinbaum
  • Publisher : Springer Science & Business Media
  • Release : 2013-04-18
  • ISBN : 1475725558
  • Pages : 332 pages

Download or read book Survival Analysis written by David G. Kleinbaum and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: A straightforward and easy-to-follow introduction to the main concepts and techniques of the subject. It is based on numerous courses given by the author to students and researchers in the health sciences and is written with such readers in mind. A "user-friendly" layout includes numerous illustrations and exercises and the book is written in such a way so as to enable readers learn directly without the assistance of a classroom instructor. Throughout, there is an emphasis on presenting each new topic backed by real examples of a survival analysis investigation, followed up with thorough analyses of real data sets. Each chapter concludes with practice exercises to help readers reinforce their understanding of the concepts covered, before going on to a more comprehensive test. Answers to both are included. Readers will enjoy David Kleinbaums style of presentation, making this an excellent introduction for all those coming to the subject for the first time.

Book Statistical Modelling of Survival Data with Random Effects

Download or read book Statistical Modelling of Survival Data with Random Effects written by Il Do Ha and published by Springer. This book was released on 2018-12-11 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a groundbreaking introduction to the likelihood inference for correlated survival data via the hierarchical (or h-) likelihood in order to obtain the (marginal) likelihood and to address the computational difficulties in inferences and extensions. The approach presented in the book overcomes shortcomings in the traditional likelihood-based methods for clustered survival data such as intractable integration. The text includes technical materials such as derivations and proofs in each chapter, as well as recently developed software programs in R (“frailtyHL”), while the real-world data examples together with an R package, “frailtyHL” in CRAN, provide readers with useful hands-on tools. Reviewing new developments since the introduction of the h-likelihood to survival analysis (methods for interval estimation of the individual frailty and for variable selection of the fixed effects in the general class of frailty models) and guiding future directions, the book is of interest to researchers in medical and genetics fields, graduate students, and PhD (bio) statisticians.

Book Analysis of Survival Data with Dependent Censoring

Download or read book Analysis of Survival Data with Dependent Censoring written by Takeshi Emura and published by Springer. This book was released on 2018-04-05 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to copula-based statistical methods for analyzing survival data involving dependent censoring. Primarily focusing on likelihood-based methods performed under copula models, it is the first book solely devoted to the problem of dependent censoring. The book demonstrates the advantages of the copula-based methods in the context of medical research, especially with regard to cancer patients’ survival data. Needless to say, the statistical methods presented here can also be applied to many other branches of science, especially in reliability, where survival analysis plays an important role. The book can be used as a textbook for graduate coursework or a short course aimed at (bio-) statisticians. To deepen readers’ understanding of copula-based approaches, the book provides an accessible introduction to basic survival analysis and explains the mathematical foundations of copula-based survival models.

Book Frailty Models in Survival Analysis

Download or read book Frailty Models in Survival Analysis written by Andreas Wienke and published by CRC Press. This book was released on 2010-07-26 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of frailty offers a convenient way to introduce unobserved heterogeneity and associations into models for survival data. In its simplest form, frailty is an unobserved random proportionality factor that modifies the hazard function of an individual or a group of related individuals. Frailty Models in Survival Analysis presents a comprehensive overview of the fundamental approaches in the area of frailty models. The book extensively explores how univariate frailty models can represent unobserved heterogeneity. It also emphasizes correlated frailty models as extensions of univariate and shared frailty models. The author analyzes similarities and differences between frailty and copula models; discusses problems related to frailty models, such as tests for homogeneity; and describes parametric and semiparametric models using both frequentist and Bayesian approaches. He also shows how to apply the models to real data using the statistical packages of R, SAS, and Stata. The appendix provides the technical mathematical results used throughout. Written in nontechnical terms accessible to nonspecialists, this book explains the basic ideas in frailty modeling and statistical techniques, with a focus on real-world data application and interpretation of the results. By applying several models to the same data, it allows for the comparison of their advantages and limitations under varying model assumptions. The book also employs simulations to analyze the finite sample size performance of the models.

Book Statistical Methods for Survival Data Analysis

Download or read book Statistical Methods for Survival Data Analysis written by Elisa T. Lee and published by Wiley-Interscience. This book was released on 1992-05-07 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functions of survival time; Examples of survival data analysis; Nonparametric methods of estimating survival functions; Nonparametric methods for comparing survival distributions; Some well-known survival distributions and their applications; Graphical methods for sulvival distribution fitting and goodness-of-fit tests; Analytical estimation procedures for sulvival distributions; Parametric methods for comparing two survival distribution; Identification of prognostic factors related to survival time; Identification of risk factors related to dichotomous data; Planning and design of clinical trials (I); Planning and design of clinicL trials(II).

Book Lifetime Data  Models in Reliability and Survival Analysis

Download or read book Lifetime Data Models in Reliability and Survival Analysis written by Nicholas P. Jewell and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical models and methods for lifetime and other time-to-event data are widely used in many fields, including medicine, the environmental sciences, actuarial science, engineering, economics, management, and the social sciences. For example, closely related statistical methods have been applied to the study of the incubation period of diseases such as AIDS, the remission time of cancers, life tables, the time-to-failure of engineering systems, employment duration, and the length of marriages. This volume contains a selection of papers based on the 1994 International Research Conference on Lifetime Data Models in Reliability and Survival Analysis, held at Harvard University. The conference brought together a varied group of researchers and practitioners to advance and promote statistical science in the many fields that deal with lifetime and other time-to-event-data. The volume illustrates the depth and diversity of the field. A few of the authors have published their conference presentations in the new journal Lifetime Data Analysis (Kluwer Academic Publishers).

Book Survival and Event History Analysis

Download or read book Survival and Event History Analysis written by Odd Aalen and published by Springer Science & Business Media. This book was released on 2008-09-16 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty; they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics.

Book Applied Survival Analysis Using R

Download or read book Applied Survival Analysis Using R written by Dirk F. Moore and published by Springer. This book was released on 2016-05-11 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Survival Analysis Using R covers the main principles of survival analysis, gives examples of how it is applied, and teaches how to put those principles to use to analyze data using R as a vehicle. Survival data, where the primary outcome is time to a specific event, arise in many areas of biomedical research, including clinical trials, epidemiological studies, and studies of animals. Many survival methods are extensions of techniques used in linear regression and categorical data, while other aspects of this field are unique to survival data. This text employs numerous actual examples to illustrate survival curve estimation, comparison of survivals of different groups, proper accounting for censoring and truncation, model variable selection, and residual analysis. Because explaining survival analysis requires more advanced mathematics than many other statistical topics, this book is organized with basic concepts and most frequently used procedures covered in earlier chapters, with more advanced topics near the end and in the appendices. A background in basic linear regression and categorical data analysis, as well as a basic knowledge of calculus and the R system, will help the reader to fully appreciate the information presented. Examples are simple and straightforward while still illustrating key points, shedding light on the application of survival analysis in a way that is useful for graduate students, researchers, and practitioners in biostatistics.

Book Bayesian Survival Analysis

    Book Details:
  • Author : Joseph G. Ibrahim
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-09
  • ISBN : 1475734476
  • Pages : 494 pages

Download or read book Bayesian Survival Analysis written by Joseph G. Ibrahim and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. It presents a balance between theory and applications, and for each class of models discussed, detailed examples and analyses from case studies are presented whenever possible. The applications are all from the health sciences, including cancer, AIDS, and the environment.