EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modeling Space Charge in Beams for Heavy ion Fusion

Download or read book Modeling Space Charge in Beams for Heavy ion Fusion written by and published by . This book was released on 1995 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new analytic model is presented which accurately estimates the radially averaged axial component of the space-charge field of an axisymmetric heavy-ion beam in a cylindrical beam pipe. The model recovers details of the field near the beam ends that are overlooked by simpler models, and the results compare well to exact solutions of Poisson's equation. Field values are shown for several simple beam profiles and are compared with values obtained from simpler models.

Book Effects of Space Charge in Beams for Heavy Ion Fusion

Download or read book Effects of Space Charge in Beams for Heavy Ion Fusion written by and published by . This book was released on 1995 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new analytic model is presented that accurately estimates the radially averaged axial component of the space-charge field of an axisymmetric heavy-ion beam in a cylindrical beam pipe. The model recovers details of the field near the beam ends that are overlooked by simpler models, and the results compare well to exact solutions of Poisson's equation. Field values are shown for several simple beam profiles and are compared with values obtained from simpler models. The model has been implemented in the fluid/envelope code CIRCE and used to study longitudinal confinement in beams with a variety of axial profiles. The effects of errors in the longitudinal-control fields are presented.

Book Effects of Longitudinal Space Charge in Beams for Heavy ion Fusion

Download or read book Effects of Longitudinal Space Charge in Beams for Heavy ion Fusion written by and published by . This book was released on 1995 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new analytic model is presented that accurately estimates the radially averaged axial component of the space-charge field of an axisymmetric heavy-ion beam in a cylindrical beam pipe. The model recovers details of the field near the beam ends that are overlooked by simpler models, and the results compare well to exact solutions of Poisson's equation. Field values are shown for several simple beam profiles and are compared with values obtained from simpler models. The model has been implemented in the fluid/envelope code CIRCE and used to study longitudinal confinement in beams with a variety of axial profiles. The effects of errors in the longitudinal-control fields are presented.

Book Three Dimensional Simulations of Space Charge Dominated Heavy Ion Beams with Applications to Inertial Fusion Energy

Download or read book Three Dimensional Simulations of Space Charge Dominated Heavy Ion Beams with Applications to Inertial Fusion Energy written by and published by . This book was released on 1994 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heavy ion fusion requires injection, transport and acceleration of high current beams. Detailed simulation of such beams requires fully self-consistent space charge fields and three dimensions. WARP3D, developed for this purpose, is a particle-in-cell plasma simulation code optimized to work within the framework of an accelerator's lattice of accelerating, focusing, and bending elements. The code has been used to study several test problems and for simulations and design of experiments. Two applications are drift compression experiments on the MBE-4 facility at LBL and design of the electrostatic quadrupole injector for the proposed ILSE facility. With aggressive drift compression on MBE-4, anomalous emittance growth was observed. Simulations carried out to examine possible causes showed that essentially all the emittance growth is result of external forces on the beam and not of internal beam space-charge fields. Dominant external forces are the dodecapole component of focusing fields, the image forces on the surrounding pipe and conductors, and the octopole fields that result from the structure of the quadrupole focusing elements. Goal of the design of the electrostatic quadrupole injector is to produce a beam of as low emittance as possible. The simulations show that the dominant effects that increase the emittance are the nonlinear octopole fields and the energy effect (fields in the axial direction that are off-axis). Injectors were designed that minimized the beam envelope in order to reduce the effect of the nonlinear fields. Alterations to the quadrupole structure that reduce the nonlinear fields further were examined. Comparisons were done with a scaled experiment resulted in very good agreement.

Book Space Charge Dominated Beam Physics for Heavy Ion Fusion

Download or read book Space Charge Dominated Beam Physics for Heavy Ion Fusion written by Yuri K. Batygin and published by American Institute of Physics. This book was released on 1999 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fusion is a combining of atoms to form other atoms, which occurs when their nuclei get close enough to each other. The energy that powers the sun actually comes from nuclear fusion. The realization of fusion in laboratory conditions requires 1000 trillion watts of a charged particle beam over a period of approx. 10 billionth of a second (10 nanoseconds) to ignite a target of thermonuclear fuel. Due to natural repulsion of particles via Coulomb forces, beam space charge effects remain the key problem for designers of high intensity accelerators for heavy ion fusion. The subject of the RIKEN Symposium was to review the present understanding of space charge phenomena and to discuss possible solutions for unresolved problems.

Book Theory and Simulation of the Physics of Space Charge Dominated Beams

Download or read book Theory and Simulation of the Physics of Space Charge Dominated Beams written by and published by . This book was released on 2002 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This report describes modeling of intense electron and ion beams in the space charge dominated regime. Space charge collective modes play an important role in the transport of intense beams over long distances. These modes were first observed in particle-in-cell simulations. The work presented here is closely tied to the University of Maryland Electron Ring (UMER) experiment and has application to accelerators for heavy ion beam fusion.

Book Three Dimensional Simulations of Space Charge Dominated Heavy Ion Beams with Applications to Inertial Fusion Energy

Download or read book Three Dimensional Simulations of Space Charge Dominated Heavy Ion Beams with Applications to Inertial Fusion Energy written by David Peter Grote and published by . This book was released on 1994 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book U S  Heavy Ion Beam Science Towards Inertial Fusion Energy

Download or read book U S Heavy Ion Beam Science Towards Inertial Fusion Energy written by and published by . This book was released on 2002 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: Significant experimental and theoretical progress in the U.S heavy-ion fusion (HIF) program is reported in modeling and measurements of intense space-charge-dominated heavy ion and electron beams. Measurements of the transport of a well-matched and aligned high current (0.2A) 1.0 MeV potassium ion beam through 10 electric quadrupoles, with a fill factor of 60%, shows no emittance growth within experimental measurement uncertainty, as expected from the simulations. Another experiment shows that passing a beam through an aperture can reduce emittance to near the theoretical limits, and that plasma neutralization of the beam's space-charge can greatly reduce the focal spot radius. Measurements of intense beamlet current density, emittance, charge-state purity, and energy spread from a new, high-brightness, Argon plasma source for HIF experiments are described. New theory and simulations of neutralization of intense beam space charge with plasma in various focusing chamber configurations indicate that near-emittance-limited beam focal spot sizes can be obtained even with beam perveance an order of magnitude higher than in earlier HIF focusing experiments.

Book Formation of High Charge State Heavy Ion Beams with Intense Space Charge

Download or read book Formation of High Charge State Heavy Ion Beams with Intense Space Charge written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: High charge-state heavy-ion beams are of interest and used for a number of accelerator applications. Some accelerators produce the beams downstream of the ion source by stripping bound electrons from the ions as they pass through a foil or gas. Heavy-ion inertial fusion (HIF) would benefit from low-emittance, high current ion beams with charge state>1. For these accelerators, the desired dimensionless perveance upon extraction from the emitter is H"0−3, and the electrical current of the beam pulse is H" A. For accelerator applications where high charge state and very high current are desired, space charge effects present unique challenges. For example, in a stripper, the separation of charge states creates significant nonlinear space-charge forces that impact the beam brightness. We will report on the particle-in-cell simulation of the formation of such beams for HIF, using a thin stripper at low energy.

Book Realistic Modeling of Chamber Transport for Heavy ion Fusion

Download or read book Realistic Modeling of Chamber Transport for Heavy ion Fusion written by and published by . This book was released on 2003 with total page 3 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transport of intense heavy-ion beams to an inertial-fusion target after final focus is simulated here using a realistic computer model. It is found that passing the beam through a rarefied plasma layer before it enters the fusion chamber can largely neutralize the beam space charge and lead to a usable focal spot for a range of ion species and input conditions.

Book Simulation of Drift Compression for Heavy Ion Fusion

Download or read book Simulation of Drift Compression for Heavy Ion Fusion written by and published by . This book was released on 2005 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Heavy Ion Fusion Science

Download or read book Heavy Ion Fusion Science written by R. C. Davidson and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past two years noteworthy experimental and theoretical progress has been made towards the top-level scientific question for the U.S. program in Heavy Ion Fusion Science and High Energy Density Physics: ''How can heavy ion beams be compressed to the high intensity required to create high energy density matter and fusion conditions''? [1]. New results in transverse and longitudinal beam compression, beam-target interaction, high-brightness transport, beam production, as well as a new scheme in beam acceleration will be reported. Longitudinal and Transverse Beam Compression: The Neutralized Transport Experiment (NTX) demonstrated transverse beam density enhancement by a factor greater than 100 when an otherwise space-charge dominated ion beam was neutralized by a plasma source [2]. This experiment was followed by the Neutralized Drift Compression Experiment (NDCX) in which an ion beam was longitudinally compressed by a factor of 50 [3]. This was accomplished by applying a linear head-to-tail velocity ''tilt'' to the beam, and then allowing the beam to drift through a meter-long neutralizing plasma. In both the transverse and longitudinal experiments, extensive 3-D simulations, using LSP, were carried out, and the agreement with experiments was excellent [4]. A three-dimensional kinetic model for longitudinal compression was developed, and it was shown that the Vlasov equation possesses a class of exact solutions for the problem [5]. Beam-Target Interaction: We have also made significant progress in identifying the unique role ion beams can play in heating material to warm dense matter (WDM) conditions. We have identified promising accelerator, beam, and target configurations, as well as new experiments on material properties. It is shown that the target temperature uniformity can be maximized if the ion energy at target corresponds to the maximum in the energy loss rate dE/dX [6]. Ions of moderate energy (a few to tens of MeV) may be used. The energy must be deposited in times much shorter than the hydrodynamic expansion time (ns for metallic foams at 0.01 to 0.1 times solid density). Hydrodynamic simulations [7] have confirmed that uniform conditions with temperature variations of less than a few per cent can be achieved. High-Brightness Transport: Unwanted electrons can lead to deleterious effects for high-brightness ion beam transport. We are studying electron accumulation in quadrupole and solenoid beam transport systems. Electrons can originate from background gas ionization, from beam-tubes struck by ions near grazing incidence, and from end-walls struck by ions near normal incidence [8]. In parallel with the experimental campaign, we have developed and implemented in WARP 3D a new approach to large time-step advancement of electron orbits, as well as a comprehensive suite of models for electrons, gas, and wall interactions [9]. If sufficient electrons are accumulated within the beam, severe distortion of the beam phase space can result. Simulations of this effect have reproduced the key features observed in the experiments. Beam Production: The merging-beamlet injector experiment recently completed demonstrates the feasibility of a compact, high-current injector for heavy ion fusion drivers. In our experiment, 119 argon ion beamlets at 400 keV beam energy were merged into an electrostatic quadrupole channel to form a single beam of 70 mA. The measured unnormalized transverse emittance (phase space area) of 200-250 mm-mrad for the merged beam met fusion driver requirement. These measurements are in good agreement with our particle-in-cell simulations using WARP3D [10]. We have also completed the physics design of a short-pulse injector suitable for WDM studies. Beam Acceleration: A new concept for acceleration, the Pulse Line Ion Accelerator PLIA [11], offers the potential of a very low cost accelerator for WDM studies. It is based on a traveling wave structure, using a simple geometry with a helical conductor. We have obtained experimental verification of the predicted PLIA beam dynamics. Measured energy gain, longitudinal phase space, and beam bunching are in good agreement with WARP3D simulations. Computational Models and Simulator Experiments: The pioneering merger of Adaptive Mesh Refinement and particle-in-cell methods [12] underlies much of the recent success of WARP3D. BEST, the Beam Equilibrium Stability and Transport code was optimized for massively parallel computers and applied to studies of the collective effects of 3D bunched beams [13] and the temperature-anisotropy instability [14]. Space-charge-dominated beam physics experiments relevant to long-path accelerators were carried out on the recently completed University of Maryland Electron Ring, and on the Paul Trap Simulator Experiment at PPPL.

Book Theory and Simulation of Emittance  Space Charge and Electron Pressure Effects on Focusing of Neutralized Ion Beams

Download or read book Theory and Simulation of Emittance Space Charge and Electron Pressure Effects on Focusing of Neutralized Ion Beams written by and published by . This book was released on 1986 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We investigate the final focus mode characterized by warm comoving electrons and vacuum propagation. In particular, we extend a previous envelope equation analysis of ion focusing in this mode to include the effects of ion emittance as well as ion space charge and initial electron temperature. Our major result is a simple equation relating initial R/sub o/ and final R/sub f/ beam radii to ion emittance epsilon and perveance K and electron Debye length lambda/sub D/ which is supported by one dimensional, electrostatic, particle-in-cell simulations of radial ion focusing. Finally, we use this equation to find the allowed temperature of neutralizing electrons for typical Heavy Ion Fusion reactor and High Temperature Experiment scenarios.

Book Hadrakhah bibliyografit shel ha hug la lashon ha   vrit

Download or read book Hadrakhah bibliyografit shel ha hug la lashon ha vrit written by M. Bar-Asher and published by . This book was released on 1970 with total page 47 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book New Methods in WARP  a Particle in cell Code for Space charge Dominated Beams

Download or read book New Methods in WARP a Particle in cell Code for Space charge Dominated Beams written by and published by . This book was released on 1998 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: The current U.S. approach for a driver for inertial confinement fusion power production is a heavy-ion induction accelerator; high-current beams of heavy ions are focused onto the fusion target. The space-charge of the high-current beams affects the behavior more strongly than does the temperature (the beams are described as being ''space-charge dominated'') and the beams behave like non-neutral plasmas. The particle simulation code WARP has been developed and used to study the transport and acceleration of space-charge dominated ion beams in a wide range of applications, from basic beam physics studies, to ongoing experiments, to fusion driver concepts. WARP combines aspects of a particle simulation code and an accelerator code; it uses multi-dimensional, electrostatic particle-in-cell (PIC) techniques and has a rich mechanism for specifying the lattice of externally applied fields. There are both two- and three-dimensional versions, the former including axisymmetric (r-z) and transverse slice (x-y) models. WARP includes a number of novel techniques and capabilities that both enhance its performance and make it applicable to a wide range of problems. Some of these have been described elsewhere. Several recent developments will be discussed in this paper. A transverse slice model has been implemented with the novel capability of including bends, allowing more rapid simulation while retaining essential physics. An interface using Python as the interpreter layer instead of Basis has been developed. A parallel version of WARP has been developed using Python.

Book Simulations of Longitudinal Beam Dynamics of Space charge Dominated Beams for Heavy Ion Fusion

Download or read book Simulations of Longitudinal Beam Dynamics of Space charge Dominated Beams for Heavy Ion Fusion written by and published by . This book was released on 1994 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: The longitudinal instability has potentially disastrous effects on the ion beams used for heavy ion driven inertial confinement fusion. This instability is a {open_quotes}resistive wall{close_quotes} instability with the impedance coining from the induction modules in the accelerator used as a driver. This instability can greatly amplify perturbations launched from the beam head and can prevent focusing of the beam onto the small spot necessary for fusion. This instability has been studied using the WARPrz particle-in-cell code. WARPrz is a 2 1/2 dimensional electrostatic axisymmetric code. This code includes a model for the impedance of the induction modules. Simulations with resistances similar to that expected in a driver show moderate amounts of growth from the instability as a perturbation travels from beam head to tail as predicted by cold beam fluid theory. The perturbation reflects off the beam tail and decays as it travels toward the beam head. Nonlinear effects cause the perturbation to steepen during reflection. Including the capacitive component of the, module impedance. has a partially stabilizing effect on the longitudinal instability. This reduction in the growth rate is seen in both cold beam fluid theory and in simulations with WARPrz. Instability growth rates for warm beams measured from WARPrz are lower than cold beam fluid theory predicts. Longitudinal thermal spread cannot account for this decrease in the growth rate. A mechanism for coupling the transverse thermal spread to decay of the longitudinal waves is presented. The longitudinal instability is no longer a threat to the heavy ion fusion program. The simulations in this thesis have shown that the growth rate for this instability will not be as large as earlier calculations predicted.

Book Numerical Modeling of a Small Recirculating Induction Accelerator for Heavy ion Fusion

Download or read book Numerical Modeling of a Small Recirculating Induction Accelerator for Heavy ion Fusion written by and published by . This book was released on 1994 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: A series of small-scale experiments has been proposed to study critical physics issues of a circular induction accelerator for heavy-ion fusion. Because the beam dynamics will be dominated by space charge, the experiments require careful design of the lattice and acceleration schedule. A hierarchy of codes has been developed for modeling the experiments at different levels of detail. The codes are discussed briefly, and examples of the output are presented.