EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modeling of High altitude Atmospheric Dispersion Using Climate and Meteorological Forecast Data

Download or read book Modeling of High altitude Atmospheric Dispersion Using Climate and Meteorological Forecast Data written by and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The overall objective of this study is to provide a demonstration of capability for importing both high altitude meteorological forecast and climatological datasets from NRL into the NARAC modeling system to simulate high altitude atmospheric droplet release and dispersion. The altitude of release for the proposed study is between 60 and 100km altitude. As either standard climatological data (over a period of 40 years) or daily meteorological forecasts can drive the particle dispersion model, we did a limited comparison of simulations with meteorological data and simulations with climatological data. The modeling tools used to address this problem are the National Atmospheric Release Advisory Center (NARAC) modeling system at LLNL which are operationally employed to assist DOE/DHS/DOD emergency response to an atmospheric release of chemical, biological, and radiological contaminants. The interrelation of the various data feeds and codes at NARAC are illustrated in Figure 1. The NARAC scientific models are all verified to both analytic solutions and other codes; the models are validated to field data such as the Prairie Grass study (Barad, 1958). NARAC has multiple real-time meteorological data feeds from the National Weather Service, from the European Center for Medium range Weather Forecasting, from the US Navy, and from the US Air Force. NARAC also keeps a historical archive of meteorological data partially for research purposes. The codes used in this effort were the Atmospheric Data Assimilation and Parameterization Techniques (ADAPT) model (Sugiyama and Chan, 1998) and a development version of the Langrangian Operational Dispersion Integrator (LODI) model (Nasstrom et al., 2000). The use of the NASA GEOS-4 dataset required the use of a development version of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) model (Hodur, 1997; Chin and Glascoe, 2004). The specific goals of this study are the following: (1) Confirm data compatibility of NRL meteorological and climatological data for NARAC models. Import both high altitude meteorological forecasts and high altitude climatological data provided by NRL into the NARAC system. (2) Run ADAPT and LODI transport/dispersion codes for one scenario on imported meteorological forecast and climatological data. (3) Provide documentation of the effort. The following tasking description gives both the context and manner in which the goals listed above were accomplished: (A) We had discussions with NRL personnel, notably Stefan Thonnard and Doug Drob, to confirm the data compatibility of the data that we will be importing for use. Data up to 100km in altitude was provided and imported into the NARAC modeling system. (B) The ADAPT atmospheric data assimilation model was used to take data from NRL and provide mass-consistent three-dimensional time-varying wind fields for the NARAC Langrangian particle tracking code, LODI. A test version of LODI, developed to consider rarefied conditions, higher altitude turbulence, and high initial particle speeds, was used run on the ADAPT output. (C) The results of the proof-of-concept simulations under time-varying meteorological forecasts and under climatological wind fields are compared and documented in this brief report discussing the capability of the NARAC modeling system for importing and using the high altitude datasets from NRL. A limited assessment of the difference between dispersion results on the different data sets is made.

Book Atmospheric Dispersion Modeling Compliance Guide

Download or read book Atmospheric Dispersion Modeling Compliance Guide written by Karl B. Schnelle and published by McGraw Hill Professional. This book was released on 2000 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: CD-ROM includes: Practice problems that reinforces and deepen understanding of modeling principles.

Book The Atmosphere over Mountainous Regions

Download or read book The Atmosphere over Mountainous Regions written by Miguel A. C. Teixeira and published by Frontiers Media SA. This book was released on 2016-11-09 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mountainous regions occupy a significant fraction of the Earth's continents and are characterized by specific meteorological phenomena operating on a wide range of scales. Being a home to large human populations, the impact of mountains on weather and hydrology has significant practical consequences. Mountains modulate the climate and create micro-climates, induce different types of thermally and dynamically driven circulations, generate atmospheric waves of various scales (known as mountain waves), and affect the boundary layer characteristics and the dispersion of pollutants. At the local scale, strong downslope winds linked with mountain waves (such as the Foehn and Bora) can cause severe damage. Mountain wave breaking in the high atmosphere is a source of Clear Air Turbulence, and lee wave rotors are a major near-surface aviation hazard. Mountains also act to block strongly stratified air layers, leading to the formation of valley cold air-pools (with implications for road safety, pollution, crop damage, etc.) and gap flows. Presently, neither the fine-scale structure of orographic precipitation nor the initiation of deep convection by mountainous terrain can be resolved adequately by regional-to global-scale models, requiring appropriate downscaling or parameterization. Additionally, the shortest mountain waves need to be parameterized in global weather and climate prediction models, because they exert a drag on the atmosphere. This drag not only decelerates the global atmospheric circulation, but also affects temperatures in the polar stratosphere, which control ozone depletion. It is likely that both mountain wave drag and orographic precipitation lead to non-trivial feedbacks in climate change scenarios. Measurement campaigns such as MAP, T-REX, Materhorn, COLPEX and i-Box provided a wealth of mountain meteorology field data, which is only starting to be explored. Recent advances in computing power allow numerical simulations of unprecedented resolution, e.g. LES modelling of rotors, mountain wave turbulence, and boundary layers in mountainous regions. This will lead to important advances in understanding these phenomena, as well as mixing and pollutant dispersion over complex terrain, or the onset and breakdown of cold air pools. On the other hand, recent analyses of global circulation biases point towards missing drag, especially in the southern hemisphere, which may be due to processes currently neglected in parameterizations. A better understanding of flow over orography is also crucial for a better management of wind power and a more effective use of data assimilation over complex terrain. This Research Topic includes contributions that aim to shed light on a number of these issues, using theory, numerical modelling, field measurements, and laboratory experiments.

Book Mountain Weather Research and Forecasting

Download or read book Mountain Weather Research and Forecasting written by Fotini K. Chow and published by Springer Science & Business Media. This book was released on 2012-08-30 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a broad understanding of the fundamental principles driving atmospheric flow over complex terrain and provides historical context for recent developments and future direction for researchers and forecasters. The topics in this book are expanded from those presented at the Mountain Weather Workshop, which took place in Whistler, British Columbia, Canada, August 5-8, 2008. The inspiration for the workshop came from the American Meteorological Society (AMS) Mountain Meteorology Committee and was designed to bridge the gap between the research and forecasting communities by providing a forum for extended discussion and joint education. For academic researchers, this book provides some insight into issues important to the forecasting community. For the forecasting community, this book provides training on fundamentals of atmospheric processes over mountainous regions, which are notoriously difficult to predict. The book also helps to provide a better understanding of current research and forecast challenges, including the latest contributions and advancements to the field. The book begins with an overview of mountain weather and forecasting chal- lenges specific to complex terrain, followed by chapters that focus on diurnal mountain/valley flows that develop under calm conditions and dynamically-driven winds under strong forcing. The focus then shifts to other phenomena specific to mountain regions: Alpine foehn, boundary layer and air quality issues, orographic precipitation processes, and microphysics parameterizations. Having covered the major physical processes, the book shifts to observation and modelling techniques used in mountain regions, including model configuration and parameterizations such as turbulence, and model applications in operational forecasting. The book concludes with a discussion of the current state of research and forecasting in complex terrain, including a vision of how to bridge the gap in the future.

Book Urban Meteorology

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 2012-06-13
  • ISBN : 0309252202
  • Pages : 190 pages

Download or read book Urban Meteorology written by National Research Council and published by National Academies Press. This book was released on 2012-06-13 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: According to the United Nations, three out of five people will be living in cities worldwide by the year 2030. The United States continues to experience urbanization with its vast urban corridors on the east and west coasts. Although urban weather is driven by large synoptic and meso-scale features, weather events unique to the urban environment arise from the characteristics of the typical urban setting, such as large areas covered by buildings of a variety of heights; paved streets and parking areas; means to supply electricity, natural gas, water, and raw materials; and generation of waste heat and materials. Urban Meteorology: Forecasting, Monitoring, and Meeting Users' Needs is based largely on the information provided at a Board on Atmospheric Sciences and Climate community workshop. This book describes the needs for end user communities, focusing in particular on needs that are not being met by current urban-level forecasting and monitoring. Urban Meteorology also describes current and emerging meteorological forecasting and monitoring capabilities that have had and will likely have the most impact on urban areas, some of which are not being utilized by the relevant end user communities. Urban Meteorology explains that users of urban meteorological information need high-quality information available in a wide variety of formats that foster its use and within time constraints set by users' decision processes. By advancing the science and technology related to urban meteorology with input from key end user communities, urban meteorologists can better meet the needs of diverse end users. To continue the advancement within the field of urban meteorology, there are both short-term needs-which might be addressed with small investments but promise large, quick returns-as well as future challenges that could require significant efforts and investments.

Book The Atmospheric Sciences

    Book Details:
  • Author : Board on Atmospheric Sciences and Climate
  • Publisher : National Academies Press
  • Release : 1998-11-05
  • ISBN : 0309517656
  • Pages : 424 pages

Download or read book The Atmospheric Sciences written by Board on Atmospheric Sciences and Climate and published by National Academies Press. This book was released on 1998-11-05 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technology has propelled the atmospheric sciences from a fledgling discipline to a global enterprise. Findings in this field shape a broad spectrum of decisions--what to wear outdoors, whether aircraft should fly, how to deal with the issue of climate change, and more. This book presents a comprehensive assessment of the atmospheric sciences and offers a vision for the future and a range of recommendations for federal authorities, the scientific community, and education administrators. How does atmospheric science contribute to national well-being? In the context of this question, the panel identifies imperatives in scientific observation, recommends directions for modeling and forecasting research, and examines management issues, including the growing problem of weather data availability. Five subdisciplines--physics, chemistry, dynamics and weather forecasting, upper atmosphere and near-earth space physics, climate and climate change--and their status as the science enters the twenty-first century are examined in detail, including recommendations for research. This readable book will be of interest to public-sector policy framers and private-sector decisionmakers as well as researchers, educators, and students in the atmospheric sciences.

Book Observation  Theory and Modeling of Atmospheric Variability

Download or read book Observation Theory and Modeling of Atmospheric Variability written by Xun Zhu and published by World Scientific. This book was released on 2004 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains tutorial and review articles as well as specific research letters that cover a wide range of topics: (1) dynamics of atmospheric variability from both basic theory and data analysis, (2) physical and mathematical problems in climate modeling and numerical weather prediction, (3) theories of atmospheric radiative transfer and their applications in satellite remote sensing, and (4) mathematical and statistical methods. The book can be used by undergraduates or graduate students majoring in atmospheric sciences, as an introduction to various research areas; and by researchers and educators, as a general review or quick reference in their fields of interest.

Book Air Pollution Modeling and Its Application XIII

Download or read book Air Pollution Modeling and Its Application XIII written by Sven-Erik Gryning and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 779 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ITM conference series has always had a strong spirit of cooperation under the NATO/CCMS umbrella, and with the considerable interest fram Partner countries to participate in the ITM conferences, it provides an excellent opportunity to create ties between scientists. Whereas all previous ITM conferences have taken place in NATO countries, the 23rd ITM takes place in a Cooperative Partner country, Bulgaria, and is hosted by the National Institute of Meteorology and Hydrology, Bulgarian Academy of Sciences. This fact reflects a general wish for a closer connection and collaboration among scientists fram Partner and NATO countries. This volume contains the papers from the 23rd NATO/CCMS International Technical Meetings on Air Pollution Modelling and Its Application, being held September 28 - October 2, 1998, at Riviera Holiday Club, Varna, Bulgaria. It was attended by 120 participants from 30 countries. Thanks are due to all who made it possible to plan, carry through, and follow up the meeting, and to the participants who made the conference so successful. Special thanks are due to the sponsoring institutions: ATO/CCMS EURASAP RIS0 BAS 3M NATO/CCMS - Committee on the Challenges of Modem Society EURASAP - European Association for the Science of Air Pollution RIS0 - Ris0 National Laboratory, Denmark NIMH - National Institute of Meteorology and Hydralogy, Bulgaria BAS - Bulgarian Academy of Sciences 3M Representation office, Bulgaria Prestige Business Ltd. , Bulgaria The excellent collaboration with CIM (Company for International Meetings Ltd.

Book Meteorological monitoring guidance for regulatory modeling applications

Download or read book Meteorological monitoring guidance for regulatory modeling applications written by and published by DIANE Publishing. This book was released on 2000 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Introduction to Global Spectral Modeling

Download or read book An Introduction to Global Spectral Modeling written by T.N. Krishnamurti and published by Springer Science & Business Media. This book was released on 2006-02-02 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introductory textbook on global spectral modeling designed for senior-level undergraduates and possibly for first-year graduate students. This text starts with an introduction to elementary finite-difference methods and moves on towards the gradual description of sophisticated dynamical and physical models in spherical coordinates. Computational aspects of the spectral transform method, the planetary boundary layer physics, the physics of precipitation processes in large-scale models, the radiative transfer including effects of diagnostic clouds and diurnal cycle, the surface energy balance over land and ocean, and the treatment of mountains are some issues that are addressed. The topic of model initialization includes the treatment of normal modes and physical processes. A concluding chapter covers the spectral energetics as a diagnostic tool for model evaluation. This revised second edition of the text also includes three additional chapters. Chapter 11 deals with the formulation of a regional spectral model for mesoscale modeling which uses a double Fourier expansion of data and model equations for its transform. Chapter 12 deals with ensemble modeling. This is a new and important area for numerical weather and climate prediction. Finally, yet another new area that has to do with adaptive observational strategies is included as Chapter 13. It foretells where data deficiencies may reside in model from an exploratory ensemble run of experiments and the spread of such forecasts.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Workbook of Atmospheric Dispersion Estimates

Download or read book Workbook of Atmospheric Dispersion Estimates written by D. Bruce Turner and published by CRC Press. This book was released on 2020-12-17 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: This completely updated and revised Second Edition of the popular Workbook of Atmospheric Dispersion Estimates provides an important foundation for understanding dispersion modeling as it is being practiced today. The book and accompanying diskette will help you determine the impacts of various sources of air pollution, including the effects of wind and turbulence, plume rise, and Gaussian dispersion and its limitations. Information is shown in summary graphs as well as in equations. The programs included on the diskette allow you to "get the feel" for the results you'll obtain through the input of various combinations of parameter values. The sensitivity of data to various parameters can be easily explored by changing one value and seeing the effect on the results. The book presents 37 example problems with solutions to show the estimation of atmospheric pollutant concentrations for many situations.

Book Atmospheric Prognostic and Dispersion Model Design for Use in the European Ensemble Modeling Exercises

Download or read book Atmospheric Prognostic and Dispersion Model Design for Use in the European Ensemble Modeling Exercises written by and published by . This book was released on 2003 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Savannah River Technology Center (SRTC) of the Department of Energy (DOE)Savannah River Site (SRS) has been involved with predicting the transport and dispersion of hazardous atmospheric releases for many years. The SRS utilizes an automated, real-time capability for consequence assessment during emergency response to local releases. The emphasis during these situations is to provide accurate guidance as quickly as possible. Consequently, atmospheric transport and dispersion models of a simple physical nature (such as Gaussian plume models) have typically been used in an effort to provide timely responses. However, use of one or two-dimensional (steady-state) winds are inadequate in conditions of high spatial and temporal variability (such as during frontal passage). Increased computing capabilities have led to the use of more sophisticated three dimensional prognostic models that may capture some of these higher resolution phenomena. In an ideal situation, the decision-maker would want to use the best model each time an accident occurred. Unfortunately, due to the nonunique nature of solutions to the nonlinear equations governing the atmosphere, model A may perform better than models B and C in one type of weather scenario, and worse during a different situation. Therefore, it is not always possible to distinguish which model is best, especially during a forecast situation. The use of an ensemble approach of averaging results from a variety of model solutions is beneficial to the modeler in providing the DM guidance on model uncertainties. Meteorological forecasts generated by numerical models provide individual realizations of the atmosphere. The resulting wind and turbulence fields are then used to drive atmospheric dispersion (transport and diffusion) models. Although many modeling agencies utilize ensemble-modeling techniques to determine atmospheric model sensitivities of prognostic fields (i.e. wind, temperature, radiation, etc.), the European Union has conducted two programs that are the first to examine atmospheric dispersion model output using an ensemble approach. The research discussed in this report is the result of participation in the latest of these two programs, ENSEMBLE.

Book Atmospheric Turbulence and Air Pollution Modelling

Download or read book Atmospheric Turbulence and Air Pollution Modelling written by F.T. Nieuwstadt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of turbulence in the atmosphere has seen considerable progress in the last decade. To put it briefly: boundary-layer meteorology, the branch of atmospheric science that concentrates on turbulence in the lower atmosphere, has moved from the surface layer into the boundary layer itself. The progress has been made on all fronts: theoretical, numerical and observational. On the other hand, air pollution modeling has not seen such a rapid evolution. It has not benefited as much as it should have from the increasing knowledge in the field of atmospheric turbulence. Air pollution modeling is still in many ways based on observations and theories of the surface layer only. This book aims to bring the reader up to date on recent advances in boundary-layer meteorology and to pave the path for applications in air pollution dispersion problems. The text originates from the material presented during a short course on Atmospheric Turbulence and Air Pollution Modeling held in The Hague during September 1981. This course was sponsored and organized by the Royal Netherlands Meteorological Institute, xi xii PREFACE to which both editors are affiliated. The Netherlands Government Ministry of Health and Environmental Protection and the Council of Europe also gave support.

Book Tracking and Predicting the Atmospheric Dispersion of Hazardous Material Releases

Download or read book Tracking and Predicting the Atmospheric Dispersion of Hazardous Material Releases written by National Research Council and published by National Academies Press. This book was released on 2003-07-18 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many years, communities have prepared themselves to deal with accidental atmospheric releases from industrial sites, energy facilities, and vehicles transporting hazardous materials. Today, these communities must also worry about the terrorist threat of the intentional use of chemical, biological, and nuclear (C/B/N) agents. Because of this threat, the ability to predict and track the dispersal of harmful agents has become a critical element of terrorism planning and response. Our nation�s capacity to respond to atmospheric C/B/N events stands, like a three legged stool, on the strength of three interconnected elements: 1) dispersion models that predict the path and spread of the hazardous agent; 2) observations of the hazardous plume itself and of local meteorological conditions, which provide critical input for the models; and 3) interaction with emergency responders who use the information provided by the models. As part of the National Academies continuing focus on issues of homeland security, Tracking and Predicting the Atmospheric Dispersion of Hazardous Material Releases examines our nation�s current capabilities in these three areas and provides recommendations for strengthening them.

Book Air Dispersion Modeling

Download or read book Air Dispersion Modeling written by Alex De Visscher and published by John Wiley & Sons. This book was released on 2013-09-26 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: A single reference to all aspects of contemporary air dispersion modeling The practice of air dispersion modeling has changed dramatically in recent years, in large part due to new EPA regulations. Current with the EPA's 40 CFR Part 51, this book serves as a complete reference to both the science and contemporary practice of air dispersion modeling. Throughout the book, author Alex De Visscher guides readers through complex calculations, equation by equation, helping them understand precisely how air dispersion models work, including such popular models as the EPA's AERMOD and CALPUFF. Air Dispersion Modeling begins with a primer that enables readers to quickly grasp basic principles by developing their own air dispersion model. Next, the book offers everything readers need to work with air dispersion models and accurately interpret their results, including: Full chapter dedicated to the meteorological basis of air dispersion Examples throughout the book illustrating how theory translates into practice Extensive discussions of Gaussian, Lagrangian, and Eulerian air dispersion modeling Detailed descriptions of the AERMOD and CALPUFF model formulations This book also includes access to a website with Microsoft Excel and MATLAB files that contain examples of air dispersion model calculations. Readers can work with these examples to perform their own calculations. With its comprehensive and up-to-date coverage, Air Dispersion Modeling is recommended for environmental engineers and meteorologists who need to perform and evaluate environmental impact assessments. The book's many examples and step-by-step instructions also make it ideal as a textbook for students in the fields of environmental engineering, meteorology, chemical engineering, and environmental sciences.

Book Atmospheric Modeling  Data Assimilation and Predictability

Download or read book Atmospheric Modeling Data Assimilation and Predictability written by Eugenia Kalnay and published by Cambridge University Press. This book was released on 2003 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2002, is a graduate-level text on numerical weather prediction, including atmospheric modeling, data assimilation and predictability.