EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modeling hydrodynamics  water temperature  and suspended sediment in Detroit Lake  Oregon

Download or read book Modeling hydrodynamics water temperature and suspended sediment in Detroit Lake Oregon written by and published by DIANE Publishing. This book was released on with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling Hydrodynamics  Temperature  and Water Quality in Henry Hagg Lake  Oregon  2000 03

Download or read book Modeling Hydrodynamics Temperature and Water Quality in Henry Hagg Lake Oregon 2000 03 written by Annett Brigitte Sullivan and published by . This book was released on 2005 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling Hydrodynamics  Water Temperature  and Water Quality in the Klamath River Upstream of Keno Dam  Oregon  2006 09

Download or read book Modeling Hydrodynamics Water Temperature and Water Quality in the Klamath River Upstream of Keno Dam Oregon 2006 09 written by Annett B. Sullivan and published by CreateSpace. This book was released on 2014-07-10 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hydrodynamic, water temperature, and water-quality model was constructed for a 20-mile reach of the Klamath River downstream of Upper Klamath Lake, from Link River to Keno Dam, for calendar years 2006–09. The two-dimensional, laterally averaged model CE-QUAL-W2 was used to simulate water velocity, ice cover, water temperature, specific conductance, dissolved and suspended solids, dissolved oxygen, total nitrogen, ammonia, nitrate, total phosphorus, orthophosphate, dissolved and particulate organic matter, and three algal groups. The Link–Keno model successfully simulated the most important spatial and temporal patterns in the measured data for this 4-year time period. The model calibration process provided critical insights into water-quality processes and the nature of those inputs and processes that drive water quality in this reach. The model was used not only to reproduce and better understand water-quality conditions that occurred in 2006–09, but also to test several load- reduction scenarios that have implications for future water- resources management in the river basin.

Book Modeling Hydrodynamics  Temperature  and Water Quality in Henry Hagg Lake  Oregon      U S  Geological Survey  Scientific Investigations Report 2004 5261  2005

Download or read book Modeling Hydrodynamics Temperature and Water Quality in Henry Hagg Lake Oregon U S Geological Survey Scientific Investigations Report 2004 5261 2005 written by and published by . This book was released on 2005* with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling Hydrodynamics  Water Temperature  and Water Quality in the Klamath River Upstream of Keno Dam  Oregon  2006 09

Download or read book Modeling Hydrodynamics Water Temperature and Water Quality in the Klamath River Upstream of Keno Dam Oregon 2006 09 written by and published by . This book was released on 2011 with total page 70 pages. Available in PDF, EPUB and Kindle. Book excerpt: "A hydrodynamic, water temperature, and water-quality model was constructed for a 20-mile reach of the Klamath River downstream of Upper Klamath Lake, from Link River to Keno Dam, for calendar years 2006-09. The two-dimensional, laterally averaged model CE-QUAL-W2 was used to simulate water velocity, ice cover, water temperature, specific conductance, dissolved and suspended solids, dissolved oxygen, total nitrogen, ammonia, nitrate, total phosphorus, orthophosphate, dissolved and particulate organic matter, and three algal groups. The Link-Keno model successfully simulated the most important spatial and temporal patterns in the measured data for this 4-year time period. The model calibration process provided critical insights into water-quality processes and the nature of those inputs and processes that drive water quality in this reach. The model was used not only to reproduce and better understand water-quality conditions that occurred in 2006-09, but also to test several load-reduction scenarios that have implications for future water-resources management in the river basin. The model construction and calibration process provided results concerning water quality and transport in the Link-Keno reach of the Klamath River, ranging from interesting circulation patterns in the Lake Ewauna area to the nature and importance of organic matter and algae. These insights and results include: Modeled segment-average water velocities ranged from near 0.0 to 3.0 ft/s in 2006 through 2009. Travel time through the model reach was about 4 days at 2,000 ft3/s and 12 days at 700 ft3/s flow. Flow direction was aligned with the upstream-downstream channel axis for most of the Link-Keno reach, except for Lake Ewauna. Wind effects were pronounced at Lake Ewauna during low-flow conditions, often with circulation in the form of a gyre that rotated in a clockwise direction when winds were towards the southeast and in a counterclockwise direction when winds were towards the northwest. Water temperatures ranged from near freezing in winter to near 30 °C at some locations and periods in summer; seasonal water temperature patterns were similar at the inflow and outflow. Although vertical temperature stratification was not present at most times and locations, weak stratification could persist for periods up to 1-2 weeks, especially in the downstream parts of the reach. Thermal stratification was important in controlling vertical variations in water quality. The specific conductance, and thus density, of tributaries within the reach usually was higher than that of the river itself, so that inflows tended to sink below the river surface. This was especially notable for inflows from the Klamath Straits Drain, which tended to sink to the bottom of the Klamath River at its confluence and not mix vertically for several miles downstream. The model was able to capture most of the seasonal changes in the algal population by modeling that population with three algal groups: blue-green algae, diatoms, and other algae. The blooms of blue-green algae, consisting mostly of Aphanizomenon flos aquae that entered from Upper Klamath Lake, were dominant, dwarfing the populations of the other two algae groups in summer. A large part of the blue-green algae population that entered this reach from upstream tended to settle out, die, and decompose, especially in the upper part of the Link-Keno reach. Diatoms reached a maximum in spring and other algae in midsummer. Organic matter, occurring in both dissolved and particulate forms, was critical to the water quality of this reach of the Klamath River, and was strongly tied to nutrient and dissolved-oxygen dynamics. Dissolved and particulate organic matter were subdivided into labile (quickly decaying) and refractory (slowing decaying) groups for modeling purposes. The particulate matter in summer, consisting largely of dead blue-green algae, decayed quickly. Consequently, this particulate matter exerted a high oxygen demand over short periods and contributed strongly to low dissolved-oxygen conditions present during summer and fall. Particulate matter in winter and dissolved organic matter throughout the year was largely refractory (slow to decay). The slower decay rate of this refractory material translates to less oxygen demand over short periods, but also will manifest itself as higher oxygen demand downstream of Keno Dam. The decay and settling of algae and particulate organic matter in the upper part of the Link-Keno reach of the Klamath River has important implications for nutrients. Decay releases nitrogen and phosphorus from particulate forms into dissolved forms such as ammonia, which had elevated concentrations in the downstream part of this reach in summer. Dissolved nutrients showed consistent seasonal patterns that were simulated well by the model. Ammonia concentrations were highest in midsummer and winter and lowest in spring. Nitrate concentrations were highest in winter and lowest in summer. Orthophosphorus concentrations were at their maximum in midsummer and lowest in winter. Comparing modeled hourly nutrient loads at the Link River inflow and the Keno Dam outflow, the Link-Keno reach and its tributaries were a source of total nitrogen and total phosphorus to downstream reaches in early spring and a sink in summer. Dissolved-oxygen concentrations were near saturation in winter, but periods of supersaturation could occur in spring and early summer as oxygen was produced by algal photosynthesis. In mid- to late summer, oxygen sources were overwhelmed by oxygen sinks, especially the decay of organic matter in the water column and river bottom. Extensive anoxia occurred during this period. The sediment oxygen demand was dynamic and represented a relatively fast decomposition of materials deposited during that same year. The labile material was eventually exhausted and reaeration from the atmosphere allowed the system to slowly return towards oxygen saturation in fall. The model simulated the general temporal and spatial patterns in dissolved oxygen, although the inclusion of macrophytes and additional information on reaeration processes, organic matter, and algal dynamics could improve the simulation of dissolved oxygen. Calendar years 2007 and 2008 had more extensive datasets than 2006 and 2009. The models built with less extensive input data were still able to reproduce the patterns in the measured data reasonably well. These findings underline the importance of using results from the 2007 and 2008 detailed field data and experimental work to determine robust model rates, stoichiometry relations, and other parameters that can be applied successfully to years with less data and with different conditions. The 2006-09 models were applied to examine the effects of several reduced-loading scenarios consistent with total maximum daily load (TMDL) targets. The water quality of the Link River inflow was modified in one scenario so that it met the in-lake phosphorus targets of the Upper Klamath Lake TMDL. Point and nonpoint sources along the Klamath River were set to be in compliance with their Klamath River TMDL allocations in another scenario. Results from those scenarios indicated that dissolved-oxygen conditions improved the most when Link River loads were reduced; depending on year, average June through October dissolved-oxygen concentrations increased between 1.9 and 3.2 mg/L. Similarly, ammonia concentrations improved the most under this scenario, with an average June through October concentration decrease between 0.20 and 0.34 mg/L. Orthophosphorus concentrations were decreased significantly in both scenarios that reduced concentrations from Link River and scenarios that reduced concentrations from in-reach point and nonpoint sources, with June through October concentration decreases between 0.02 and 0.06 mg/L. The calibrated models are useful tools that reproduce the most important water-quality processes occurring in the Link-Keno reach of the Klamath River. These models are accurate enough to provide insights into the nature of those processes and the probable effects of proposed management and water-quality improvement strategies."--Executive summary.

Book Development of a CE QUAL W2 Temperature Model for Crystal Springs Lake  Portland  Oregon

Download or read book Development of a CE QUAL W2 Temperature Model for Crystal Springs Lake Portland Oregon written by Norman Loris Buccola and published by . This book was released on 2016 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: During summer 2014, lake level, streamflow, and water temperature in and around Crystal Springs Lake in Portland, Oregon, were measured by the U.S. Geological Survey and the City of Portland Bureau of Environmental Services to better understand the effect of the lake on Crystal Springs Creek and Johnson Creek downstream. Johnson Creek is listed as an impaired water body for temperature by the Oregon Department of Environmental Quality (ODEQ), as required by section 303(d) of the Clean Water Act. A temperature total maximum daily load applies to all streams in the Johnson Creek watershed, including Crystal Springs Creek. Summer water temperatures downstream of Crystal Springs Lake and the Golf Pond regularly exceed the ODEQ numeric criterion of 64.4 °F (18.0 °C) for salmonid rearing and migration. To better understand temperature contributions of this system, the U.S. Geological Survey developed two-dimensional hydrodynamic water temperature models of Crystal Springs Lake and the Golf Pond. Model grids were developed to closely resemble the bathymetry of the lake and pond using data from a 2014 survey. The calibrated models simulated surface water elevations to within 0.06 foot (0.02 meter) and outflow water temperature to within 1.08 °F (0.60 °C). Streamflow, water temperature, and lake elevation data collected during summer 2014 supplied the boundary and reference conditions for the model. Measured discrepancies between outflow and inflow from the lake, assumed to be mostly from unknown and diffuse springs under the lake, accounted for about 46 percent of the total inflow to the lake. Model simulations (scenarios) were run with lower water surface elevations in Crystal Springs Lake and increased shading to the lake to assess the relative effect the lake and pond characteristics have on water temperature. The Golf Pond was unaltered in all scenarios. The models estimated that lower lake elevations would result in cooler water downstream of the Golf Pond and shorter residence times in the lake. Increased shading to the lake would also provide substantial cooling. Most management scenarios resulted in a decrease in 7-day average of daily maximum values by about 2.0-4.7 °F (1.1 -2.6 °C) for outflow from Crystal Springs Lake during the period of interest. Outflows from the Golf Pond showed a net temperature reduction of 0.5-2.7 °F (0.3-1.5 °C) compared to measured values in 2014 because of solar heating and downstream warming in the Golf Pond resulting from mixing with inflow from Reed Lake.

Book Development of a HEC RAS Temperature Model for the North Santiam River  Northwestern Oregon

Download or read book Development of a HEC RAS Temperature Model for the North Santiam River Northwestern Oregon written by Adam Stonewall and published by . This book was released on 2015 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: A one-dimensional, unsteady streamflow and temperature model (HEC-RAS) of the North Santiam and Santiam Rivers was developed by the U.S. Geological Survey to be used in conjunction with previously developed two-dimensional hydrodynamic water-quality models (CE-QUAL-W2) of Detroit and Big Cliff Lakes upstream of the study area. In conjunction with the output from the previously developed models, the HEC-RAS model can simulate streamflows and temperatures within acceptable limits (mean error [bias] near zero; typical streamflow errors less than 5 percent; typical water temperature errors less than 1.0 °C) for the length of the North Santiam River downstream of Big Cliff Dam under a series of potential future conditions in which dam structures and/or dam operations are modified to improve temperature conditions for threatened and endangered fish. Although a two-dimensional (longitudinal, vertical) CE-QUAL-W2 model for the North Santiam and Santiam Rivers downstream of Big Cliff Dam exists, that model proved unstable under highly variable flow conditions. The one-dimensional HEC-RAS model documented in this report can better simulate cross-sectional-averaged stream temperatures under a wide range of flow conditions. The model was calibrated using 2011 streamflow and temperature data. Measured data were used as boundary conditions when possible, although several lateral inflows and their associated water temperatures, including the South Santiam River, were estimated using statistical models. Streamflow results showed high accuracy during low-flow periods, but predictions were biased low during large storm events when unmodeled ephemeral tributaries contributed to the actual streamflow. Temperature results showed low annual bias against measured data at two locations on the North Santiam River and one location on the Santiam River. Mean absolute errors using 2011 hourly data ranged from 0.4 to 0.7 °C. Model results were checked against 2012 data and showed a positive bias at the Santiam River station (+0.6 C). Annual mean absolute errors using 2012 hourly data ranged from 0.4 to 0.8 °C. Much of the error in temperature predictions resulted from the models inability to accurately simulate the full range of diurnal fluctuations during the warmest months. Future iterations of the model could be improved by the collection and inclusion of additional streamflow and temperature data, especially near the mouth of the South Santiam River. Presently, the model is able to predict hourly and daily water temperatures under a wide variety of conditions with a typical error of 0.8 and 0.7 °C, respectively.

Book Aquatic Sciences and Fisheries Abstracts

Download or read book Aquatic Sciences and Fisheries Abstracts written by and published by . This book was released on 1991 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Water Quality Conditions and Suspended Sediment Transport in the Wilson and Trask Rivers  Northwestern Oregon  Water Years 2012 14

Download or read book Water Quality Conditions and Suspended Sediment Transport in the Wilson and Trask Rivers Northwestern Oregon Water Years 2012 14 written by Steven Sobieszczyk and published by . This book was released on 2015 with total page 32 pages. Available in PDF, EPUB and Kindle. Book excerpt: In October 2011, the U.S. Geological Survey began investigating and monitoring water-quality conditions and suspended-sediment transport in the Wilson and Trask Rivers, northwestern Oregon. Water temperature, specific conductance, turbidity, and dissolved oxygen were measured every 15-30 minutes in both streams using real-time instream water-quality monitors. In conjunction with the monitoring effort, suspended-sediment samples were collected and analyzed to model the amount of suspended sediment being transported by each river. Over the course of the 3-year study, which ended in September 2014, nearly 600,000 tons (t) of suspended-sediment material entered Tillamook Bay from these two tributaries. Each year of the study, the Wilson River transported between 80,300 and 240,000 t of suspended sediment, while the Trask River contributed between 28,200 and 69,900 t. The suspended-sediment loads observed during the study were relatively small because streamflow conditions were routinely lower than normal between October 2011 and September 2014. Only one storm had a recurrence interval between a 2- and 5-year event. Every other storm produced streamflows equivalent to what would be classified as a 1- or 2-year event. Because most sediment moves during high flows, the lack of heavy rainfall and elevated streamflows muted any high sediment loads. Along with assessing suspended-sediment transport, the U.S. Geological Survey also monitored instream water quality. This monitoring was used to track instream conditions and relate them to water temperature, dissolved oxygen, and sedimentation issues for the Wilson and Trask Rivers. Stream temperatures in the Wilson and Trask Rivers exceeded the temperature standard for cold-water habitat. Water temperatures at both streams exceeded the standard for more than 30 percent of the year, as stream temperatures increased above the seasonal 13 degrees Celsius (°C) (seasonal core cold-water habitat) and 16 °C (salmon and steelhead [Oncorhynchus mykiss] spawning) thresholds. Conversely, dissolved oxygen concentrations rarely decreased to less than the absolute water-quality criterion of 8 milligrams per liter for cold-water streams. Results from this study will provide resource managers insight into the seasonality of water-quality conditions and the extent of suspended-sediment transport in the Wilson and Trask Rivers. The data are useful for establishing a baseline and for maintaining best-use land management practices and possibly for aiding in prioritization of restoration actions for both rivers and their respective watersheds.

Book Water Resources Research Catalog

Download or read book Water Resources Research Catalog written by United States. Office of Water Research and Technology and published by . This book was released on 1972 with total page 1590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning with vol. 9, only new and continuing but modified projects are listed. Vols. 8- should be kept as a record of continuing but unchanged projects.

Book HEC 6

Download or read book HEC 6 written by and published by . This book was released on 1995 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Rates  Constants  and Kinetics Formulations in Surface Water Quality Modeling

Download or read book Rates Constants and Kinetics Formulations in Surface Water Quality Modeling written by Environmental Research Laboratory (Athens, Ga.) and published by . This book was released on 1978 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Contaminated Sediments in Ports and Waterways

Download or read book Contaminated Sediments in Ports and Waterways written by Division on Engineering and Physical Sciences and published by National Academies Press. This book was released on 1997-04-20 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contaminated marine sediments threaten ecosystems, marine resources, and human health. They can have major economic impacts when controversies over risks and costs of sediment management interfere with needs to dredge major ports. Contaminated Sediments in Ports and Waterways examines management and technology issues and provides guidance that will help officials make timely decisions and use technologies effectively. The book includes recommendations with a view toward improving decision making, developing cost-effective technologies, and promoting the successful completion of cleanup projects. The volume assesses the state of practice and research and development status of both short-term and longer-term remediation methods. The committee provides a conceptual overview for risk-based contaminated sediment management that can be used to develop plans that address complex technological, political, and legal issues and the interests of various stakeholders. The book emphasizes the need for proper assessment of conditions at sediment sites and adequate control of contamination sources.

Book Notes on Sedimentation Activities

Download or read book Notes on Sedimentation Activities written by and published by . This book was released on 1994 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Impacts of Climate Change on Human Health in the United States

Download or read book Impacts of Climate Change on Human Health in the United States written by US Global Change Research Program and published by Simon and Schuster. This book was released on 2018-02-06 with total page 999 pages. Available in PDF, EPUB and Kindle. Book excerpt: As global climate change proliferates, so too do the health risks associated with the changing world around us. Called for in the President’s Climate Action Plan and put together by experts from eight different Federal agencies, The Impacts of Climate Change on Human Health: A Scientific Assessment is a comprehensive report on these evolving health risks, including: Temperature-related death and illness Air quality deterioration Impacts of extreme events on human health Vector-borne diseases Climate impacts on water-related Illness Food safety, nutrition, and distribution Mental health and well-being This report summarizes scientific data in a concise and accessible fashion for the general public, providing executive summaries, key takeaways, and full-color diagrams and charts. Learn what health risks face you and your family as a result of global climate change and start preparing now with The Impacts of Climate Change on Human Health.