EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modeling Ductile Damage Evolution in Metal Forming Processes

Download or read book Modeling Ductile Damage Evolution in Metal Forming Processes written by Yong Shin Lee and published by . This book was released on 1991 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modelling and Simulation of Sheet Metal Forming Processes

Download or read book Modelling and Simulation of Sheet Metal Forming Processes written by Marta C. Oliveira and published by MDPI. This book was released on 2020-04-22 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical simulation of sheet metal forming processes has become an indispensable tool for the design of components and their forming processes. This role was attained due to the huge impact in reducing time to market and the cost of developing new components in industries ranging from automotive to packing, as well as enabling an improved understanding of the deformation mechanisms and their interaction with process parameters. Despite being a consolidated tool, its potential for application continues to be discovered with the continuous need to simulate more complex processes, including the integration of the various processes involved in the production of a sheet metal component and the analysis of in-service behavior. The quest for more robust and sustainable processes has also changed its deterministic character into stochastic to be able to consider the scatter in mechanical properties induced by previous manufacturing processes. Faced with these challenges, this Special Issue presents scientific advances in the development of numerical tools that improve the prediction results for conventional forming process, enable the development of new forming processes, or contribute to the integration of several manufacturing processes, highlighting the growing multidisciplinary characteristic of this field.

Book Ductile Fracture in Metal Forming

Download or read book Ductile Fracture in Metal Forming written by Kazutake Komori and published by Academic Press. This book was released on 2019-10-11 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ductile Fracture in Metal Forming: Modeling and Simulation examines the current understanding of the mechanics and physics of ductile fracture in metal forming processes while also providing an approach to micromechanical ductile fracture prediction that can be applied to all metal forming processes. Starting with an overview of different ductile fracture scenarios, the book then goes on to explain modeling techniques that predict a range of mechanical phenomena that can lead to ductile fracture. The challenges in creating micromechanical models are addressed alongside methods of applying these models to several common metal forming processes. This book is suitable for researchers working in mechanics of materials, metal forming, mechanical metallurgy, and plasticity. Engineers in R&D industries involved in metal forming such as manufacturing, aerospace, and automation will also find the book very useful. - Explains innovative micromechanical modeling techniques for a variety of material behaviors - Examines how these models can be applied to metal forming processes in practice, including blanking, arrowed cracks in drawing, and surface cracks in upset forging - Provides a thorough examination of both macroscopic and microscopic ductile fracture theory

Book Ductile Damage Prediction in Sheet Metal Forming Processes

Download or read book Ductile Damage Prediction in Sheet Metal Forming Processes written by Zhenming Yue and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this work is to propose a “highly” predictive material model for sheet metal forming simulation which can well represent the sheet material behavior under complex loading paths and large plastic strains. Based on the thermodynamics of irreversible processes framework, the advanced fully coupled constitutive equations are proposed taking into account the initial and induced anisotropies, isotropic and kinematic hardening as well as the isotropic ductile damage. The microcracks closure, the stress triaxiality and the Lode angle effects are introduced to influence the damage rate under a wide range of triaxiality ratios. The distortion of the yield surface is described by replacing the usual stress deviator tensor by a 'distorted stress' deviator tensor, which governs the distortion of the yield surfaces. For comparisons, the FLD and FLSD models based on M-K approach are developed.A series of experiments for three materials are conducted for the identification and validation of the proposed models. For the parameters identification of the fully coupled CDM model, an inverse methodology combining MATLAB-based minimization software with ABAQUS FE code through the Python script is used. After the implementation of the model in ABAQUS/Explicit and a systematic parametric study, various sheet metal forming processes have been numerically simulated. At last, through the comparisons between experimental and numerical results including the ductile damage initiation and propagation, the high capability of the fully coupled CDM model is proved.

Book Damage Evolution Modeling in Forming Processes

Download or read book Damage Evolution Modeling in Forming Processes written by Kapil Kumar Mathur and published by . This book was released on 1987 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Damage Mechanics in Metal Forming

Download or read book Damage Mechanics in Metal Forming written by Khemais Saanouni and published by John Wiley & Sons. This book was released on 2013-02-04 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to summarize the current most effective methods for modeling, simulating, and optimizing metal forming processes, and to present the main features of new, innovative methods currently being developed which will no doubt be the industrial tools of tomorrow. It discusses damage (or defect) prediction in virtual metal forming, using advanced multiphysical and multiscale fully coupled constitutive equations. Theoretical formulation, numerical aspects as well as application to various sheet and bulk metal forming are presented in detail. Virtual metal forming is nowadays inescapable when looking to optimize numerically various metal forming processes in order to design advanced mechanical components. To do this, highly predictive constitutive equations accounting for the full coupling between various physical phenomena at various scales under large deformation including the ductile damage occurrence are required. In addition, fully 3D adaptive numerical methods related to time and space discretization are required in order to solve accurately the associated initial and boundary value problems. This book focuses on these two main and complementary aspects with application to a wide range of metal forming and machining processes. Contents 1. Elements of Continuum Mechanics and Thermodynamics. 2. Thermomechanically-Consistent Modeling of the Metals Behavior with Ductile Damage. 3. Numerical Methods for Solving Metal Forming Problems. 4. Application to Virtual Metal Forming.

Book State of the Art and Future Trends in Material Modeling

Download or read book State of the Art and Future Trends in Material Modeling written by Holm Altenbach and published by Springer Nature. This book was released on 2019-10-23 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: This special anniversary book celebrates the success of this Springer book series highlighting materials modeling as the key to developing new engineering products and applications. In this 100th volume of “Advanced Structured Materials”, international experts showcase the current state of the art and future trends in materials modeling, which is essential in order to fulfill the demanding requirements of next-generation engineering tasks.

Book Multiscale Modelling in Sheet Metal Forming

Download or read book Multiscale Modelling in Sheet Metal Forming written by Dorel Banabic and published by Springer. This book was released on 2016-10-20 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a unified presentation of the research performed in the field of multiscale modelling in sheet metal forming over the course of more than thirty years by the members of six teams from internationally acclaimed universities. The first chapter is devoted to the presentation of some recent phenomenological yield criteria (BBC 2005 and BBC 2008) developed at the CERTETA center from the Technical University of Cluj-Napoca. An overview on the crystallographic texture and plastic anisotropy is presented in Chapter 2. Chapter 3 is dedicated to multiscale modelling of plastic anisotropy. The authors describe a new hierarchical multi-scale framework that allows taking into account the evolution of plastic anisotropy during sheet forming processes. Chapter 4 is focused on modelling the evolution of voids in porous metals with applications to forming limit curves and ductile fracture. The chapter details the steps needed for the development of dissipation functions and Gurson-type models for non-quadratic anisotropic plasticity criteria like BBC 2005 and those based on linear transformations. Chapter 5 describes advanced models for the prediction of forming limit curves developed by the authors. Chapter 6 is devoted to anisotropic damage in elasto-plastic materials with structural defects. Finally, Chapter 7 deals with modelling of the Portevin-Le Chatelier (PLC) effect. This volume contains contributions from leading researchers from the Technical University of Cluj-Napoca, Romania, the Catholic University of Leuven, Belgium, Clausthal University of Technology, Germany, Amirkabir University of Technology, Iran, the University of Bucharest, Romania, and the Institute of Mathematics of the Romanian Academy, Romania. It will prove useful to postgraduate students, researchers and engineers who are interested in the mechanical modeling and numerical simulation of sheet metal forming processes.

Book Fundamentals Of Materials Modelling For Metals Processing Technologies  Theories And Applications

Download or read book Fundamentals Of Materials Modelling For Metals Processing Technologies Theories And Applications written by Jianguo Lin and published by World Scientific Publishing Company. This book was released on 2015-03-24 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the unique theory developed over years of research on materials and process modelling and its application in metal forming technologies. It starts with the introduction of fundamental theories on the mechanics of materials, computational mechanics and the formulation of unified constitutive equations. Particular attention is paid to elastic-plastic formulations for cold metal forming and unified elastic-viscoplastic constitutive equations for warm/hot metals processing. Damage in metal forming and numerical techniques to solve and determine the unified constitutive equations are also detailed. Examples are given for the application of the unified theories to solve practical problems encountered in metal forming processes. This is particularly useful to predict microstructure evolution in warm/hot metal forming processes. Crystal plasticity theories and modelling techniques with their applications in micro-forming are also introduced in the book.The book is self-contained and unified in presentation. The explanations are highlighted to capture the interest of curious readers and complete enough to provide the necessary background material to further explore/develop new theories and applications.

Book Proceedings of the 14th International Conference on the Technology of Plasticity   Current Trends in the Technology of Plasticity

Download or read book Proceedings of the 14th International Conference on the Technology of Plasticity Current Trends in the Technology of Plasticity written by Katia Mocellin and published by Springer Nature. This book was released on 2023-09-19 with total page 788 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume highlights the latest advances, innovations, and applications in the field of metal forming, as presented by leading international researchers and engineers at the 14th International Conference on Technology of Plasticity (ICTP), held in Mandelieu-La Napoule, France on September 24-29, 2023. It covers a diverse range of topics such as manufacturing processes & equipment, materials behavior and characterization, microstructure design by forming, surfaces & interfaces, control & optimization, green / sustainable metal forming technologies, digitalization & AI in metal forming, multi-material processing, agile / flexible metal forming processes, forming of non-metallic materials, micro-forming and luxury applications. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.

Book Numerical Modelling and Simulation of Metal Processing

Download or read book Numerical Modelling and Simulation of Metal Processing written by Christof Sommitsch and published by MDPI. This book was released on 2021-08-16 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with metal processing and its numerical modelling and simulation. In total, 21 papers from different distinguished authors have been compiled in this area. Various processes are addressed, including solidification, TIG welding, additive manufacturing, hot and cold rolling, deep drawing, pipe deformation, and galvanizing. Material models are developed at different length scales from atomistic simulation to finite element analysis in order to describe the evolution and behavior of materials during thermal and thermomechanical treatment. Materials under consideration are carbon, Q&T, DP, and stainless steels; ductile iron; and aluminum, nickel-based, and titanium alloys. The developed models and simulations shall help to predict structure evolution, damage, and service behavior of advanced materials.

Book Simulation of Continuous Damage and Fracture in Metal forming Processes with 3D Mesh Adaptive Methodology

Download or read book Simulation of Continuous Damage and Fracture in Metal forming Processes with 3D Mesh Adaptive Methodology written by Fangtao Yang and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is part of the research carried out in the framework of a collaboration between the Roberval laboratory of the Compiègne University of Technology and the team within the framework of the project ANR-14-CE07-0035 LASMIS of the Charles Delaunay Institute of Technology University of Troyes. In this work, we present a three-dimensional adaptive Pi-methodology of finite elements to represent the initiation and propagation of cracks in ductile materials. An elastoplastic model coupled with the isotropic damage proposed by the LASMIS / UTT team is used. The targeted applications will mainly concern the metal forming. In this context, an updated Lagrangian formulation is used and frequent remeshing is essential in order to avoid the strong distortion of elements due to large plastic deformations and to follow the modifications of the topology resulting in the creation of cracks. The size of the new mesh must allow at a lower cost to accurately represent the evolution of the gradients of the physical quantities representative of the studied phenomena (plasticity, damage ...). We propose empirical indicators of size of elements based on the plastic deformation as well as on the damage. A piecewise defined curve represents the evolution of the element size according to the severity of the plasticity and, if appropriate, the damage. The cracks are represented by a method of destruction of elements which allows an easy description of the geometry and a simplified treatment of the cracking without any need for additional criteria. On the other hand, to allow a realistic description of the cracks, the latter must be represented by erosion smaller elements. An ABAQUS / Explicit@ solver is used with quadratic tetrahedral elements (C3DIOM), avoiding in particular the problems of numerical locking occurring during the analysis of structures in compressible or quasi-incompressible material. The control of the smaller mesh size is important in an explicit context. In addition, for softening phenomena, the solution depends on the mesh size considered as an intrinsic parameter. A study has shown that when the mesh is sufficiently refined, the effects of mesh dependence are reduced. In the literature, the costs of frequent meshing or remeshing are often considered prohibitive and many authors rely on this argument to introduce, with success, alternative methods that limit the cost of remeshing operations without eliminating them ( XFEM for example). Our work shows that the cost of local remeshing is negligible compared to the calculation. Given the complexity of the geometry and the need to refine the mesh, the only alternative to date is to use a mesh in tetrahedra. The strategy of local remeshing tetrahedron is based on a bisection method followed if necessary by a local optimization of the grid proposed by A. Rassineux in 2003. The remeshing, even local, must be accompanied by field transfer procedures on both nodal variables and integration points. Node variables are, as most authors do, transferred using finite element shape functions. The 3D field transfer at Gauss points and the many underlying problems have been relatively untouched in the literature. The main difficulties to be solved in order to ensure the "quality" of the transfer concern the limitation of numerical diffusion, the lack of information near borders, the respect of boundary conditions, the equilibrium, the calculation costs, the filtering of the information points, crucial problems in 3D where the number of Gauss points used is several hundred. We propose a so-called "hybrid" method which consists, initially, in extrapolating the data at the Gauss points, in the nodes by diffuse interpolation and then in using the finite element form functions to obtain the value at the point considered.

Book Foundations of Elastoplasticity  Subloading Surface Model

Download or read book Foundations of Elastoplasticity Subloading Surface Model written by Koichi Hashiguchi and published by Springer Nature. This book was released on 2023-06-12 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the standard text book for elastoplasticity/viscoplasticity which is explained comprehensively covering the rate-independent to -dependent finite deformations of metals, soils, polymers, crystal plasticity, etc. and the friction phenomenon. Concise explanations on vector-tensor analysis and continuum mechanics are provided first, covering the underlying physical concepts, e.g. various time-derivatives, pull-back and push-forward operations, work-conjugacy and multiplicative decomposition of deformation gradient tensor. Then, the rigorous elastoplastic/viscoplastic model, called the subloading surface model, is explained comprehensively, which is based on the subloading surface concept to describe the continuous development of the plastic/viscoplastic strain rate as the stress approaches to the yield surface, while it can never be described by the other plasticity models, e.g. the Chaboche-Ohno and the Dafalias-Yoshida models assuming the purely-elastic domain. The main features of the subloading surface model are as follows: 1) The subloading surface concept underling the cyclic plasticity is introduced, which insists that the plastic deformation develops as the stress approaches the yield surface. Thus, the smooth elastic-plastic transition leading to the continuous variation of the tangent stiffness modulus is described always. 2) The subloading-overstress model is formulated by which the elastoplastic deformation during the quasi-static loading and the viscoplastic deformation during the dynamic and impact loading can be described by the unified equation. Then, only this model can be used to describe the deformation in the general rate of deformation, disusing the elastoplastic constitutive equation. 3) The hyperelastic-based (visco)plasticity based on the multiplicative decomposition of deformation gradient tensor and the subloading surface model is formulated for the exact descriptions of the finite elastic and (visco)plastic deformations. 4) The subloading-friction model is formulated for the exact description of the dry and the fluid (lubricated) frictions at the general rate of sliding from the static to the impact sliding. Thus, all the elastic and inelastic deformation/sliding phenomena of solids can be described accurately in the unified equation by the subloading-overstress model. The subloading surface model will be engraved as the governing law of irreversible deformation of solids in the history of solid mechanics.

Book IUTAM Symposium on Multiscale Modeling and Characterization of Elastic Inelastic Behavior of Engineering Materials

Download or read book IUTAM Symposium on Multiscale Modeling and Characterization of Elastic Inelastic Behavior of Engineering Materials written by S. Ahzi and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers in this proceeding are a collection of the works presented at the IUTAM symposium-Marrakech 2002 (October 20-25) which brought together scientists from various countries. These papers cover contemporary topics in multiscale modeling and characterization of materials behavior of engineering materials. They were selected to focus on topics related to deformation and failure in metals, alloys, intermetallics and polymers including: experimental techniques, deformation and failure mechanisms, dislocation-based modelling, microscopic-macroscopic averaging schemes, application to forming processes and to phase transformation, localization and failure phenomena, and computational advances. Key areas that are covered by some of the papers include modeling of material deformation at various scales. At the atomistic scale, results from MD simulations pertaining to deformation mechanisms in nano-crystalline materials as well as dislocation-defect interactions are presented. Advances in modeling of deformation in metals using discrete dislocation analyses are also presented, providing an insight into this emerging scientific technique that can be used to model deformation at the microscale. These papers address current engineering problems, including deformation of thin fIlms, dislocation behavior and strength during nanoindentation, strength in metal matrix composites, dislocation-crack interaction, development of textures in polycrystals, and problems involving twining and shape memory behavior. On Behalf of the organizing committee, I would like to thank Professor P.

Book Continuum Damage Mechanics

Download or read book Continuum Damage Mechanics written by Sumio Murakami and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry. This, in turn, has caused more interest in continuum damage mechanics and its engineering applications. This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook. The book consists of two parts and an appendix. Part I is concerned with the foundation of continuum damage mechanics. Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2. In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application to the modeling of the constitutive and the evolution equations of damaged materials are descried as a systematic basis for the subsequent development throughout the book. Part II describes the application of the fundamental theories developed in Part I to typical damage and fracture problems encountered in various fields of the current engineering. Important engineering aspects of elastic-plastic or ductile damage, their damage mechanics modeling and their further refinement are first discussed in Chapter 6. Chapters 7 and 8 are concerned with the modeling of fatigue, creep, creep-fatigue and their engineering application. Damage mechanics modeling of complicated crack closure behavior in elastic-brittle and composite materials are discussed in Chapters 9 and 10. In Chapter 11, applicability of the local approach to fracture by means of damage mechanics and finite element method, and the ensuing mathematical and numerical problems are briefly discussed. A proper understanding of the subject matter requires knowledge of tensor algebra and tensor calculus. At the end of this book, therefore, the foundations of tensor analysis are presented in the Appendix, especially for readers with insufficient mathematical background, but with keen interest in this exciting field of mechanics.

Book Material Forming

Download or read book Material Forming written by Lukasz Madej and published by Materials Research Forum LLC. This book was released on 2023-04-25 with total page 2163 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings present papers on Additive Manufacturing, Composites Forming Processes, Extrusion and Drawing, Forging and Rolling, Formability of Metallic Materials, Friction and Wear in Metal Forming, Incremental and Sheet Metal Forming, Innovative Joining by Forming Technologies, Lionel Fourment MS on Optimization and Inverse Analysis in Forming, Machining and Cutting, Material Behavior Modelling, New and Advanced Numerical Strategies for Material Forming, Non-Conventional Processes, Polymer Processing and Thermomechanical Properties, Sustainability on Material Forming, and Property-Controlled Forming.

Book Micromechanics Modelling of Ductile Fracture

Download or read book Micromechanics Modelling of Ductile Fracture written by Zengtao Chen and published by Springer Science & Business Media. This book was released on 2013-04-02 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes research advances in micromechanics modeling of ductile fractures made in the past two decades. The ultimate goal of this book is to reach manufacturing frontline designers and materials engineers by providing a user-oriented, theoretical background of micromechanics modeling. Accordingly, the book is organized in a unique way, first presenting a vigorous damage percolation model developed by the authors over the last ten years. This model overcomes almost all difficulties of the existing models and can be used to completely accommodate ductile damage developments within a single-measure microstructure frame. Related void damage criteria including nucleation, growth and coalescence are then discussed in detail: how they are improved, when and where they are used in the model, and how the model performs in comparison with the existing models. Sample forming simulations are provided to illustrate the model’s performance.