Download or read book Modeling Anomalous Diffusion From Statistics To Mathematics written by Weihua Deng and published by World Scientific. This book was released on 2020-01-06 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on modeling the anomalous diffusion phenomena, being ubiquitous in the natural world. Both the microscopic models (stochastic processes) and macroscopic models (partial differential equations) have been built up. The relationships between the two kinds of models are clarified, and based on these models, some statistical observables are analyzed. From statistics to mathematics, the built models show their power with their associated applications.This book is important for students to develop basic skills to be able to succeed in their future research. In addition to introducing the related models or methods, it also provides the corresponding applications and simulation results, which will attract more readers ranging from mathematicians to physicists or chemists, to name a few.
Download or read book Modeling Anomalous Diffusion written by Weihua Deng and published by World Scientific Publishing Company. This book was released on 2019-12-27 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: "One of the authors, Weihua Deng, has an interdisciplinary research background with a deep understanding on the related anomalous models from the viewpoint of mathematics and physics In this book, we not only introduce the widely investigated models but also discuss some new topics, for example, infinite densities, functionals, etc. This book will get more attention from undergraduates and some high-level students"--
Download or read book Stochastic Models for Fractional Calculus written by Mark M. Meerschaert and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-10-21 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional calculus is a rapidly growing field of research, at the interface between probability, differential equations, and mathematical physics. It is used to model anomalous diffusion, in which a cloud of particles spreads in a different manner than traditional diffusion. This monograph develops the basic theory of fractional calculus and anomalous diffusion, from the point of view of probability. In this book, we will see how fractional calculus and anomalous diffusion can be understood at a deep and intuitive level, using ideas from probability. It covers basic limit theorems for random variables and random vectors with heavy tails. This includes regular variation, triangular arrays, infinitely divisible laws, random walks, and stochastic process convergence in the Skorokhod topology. The basic ideas of fractional calculus and anomalous diffusion are closely connected with heavy tail limit theorems. Heavy tails are applied in finance, insurance, physics, geophysics, cell biology, ecology, medicine, and computer engineering. The goal of this book is to prepare graduate students in probability for research in the area of fractional calculus, anomalous diffusion, and heavy tails. Many interesting problems in this area remain open. This book will guide the motivated reader to understand the essential background needed to read and unerstand current research papers, and to gain the insights and techniques needed to begin making their own contributions to this rapidly growing field.
Download or read book Fractional Diffusion Equations and Anomalous Diffusion written by Luiz Roberto Evangelista and published by Cambridge University Press. This book was released on 2018-01-25 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a unified treatment of anomalous diffusion problems using fractional calculus in a wide range of applications across scientific and technological disciplines.
Download or read book Modeling Anomalous Diffusion written by Weihua Deng and published by . This book was released on 2020 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: "One of the authors, Weihua Deng, has an interdisciplinary research background with a deep understanding on the related anomalous models from the viewpoint of mathematics and physics In this book, we not only introduce the widely investigated models but also discuss some new topics, for example, infinite densities, functionals, etc. This book will get more attention from undergraduates and some high-level students"--
Download or read book Anomalous Transport Applications Mathematical Perspectives and Big Data written by Ralf Metzler and published by Frontiers Media SA. This book was released on 2021-01-08 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nonlocal Modeling Analysis and Computation written by Qiang Du and published by SIAM. This book was released on 2019-03-20 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studies of complexity, singularity, and anomaly using nonlocal continuum models are steadily gaining popularity. This monograph provides an introduction to basic analytical, computational, and modeling issues and to some of the latest developments in these areas. Nonlocal Modeling, Analysis, and Computation includes motivational examples of nonlocal models, basic building blocks of nonlocal vector calculus, elements of theory for well-posedness and nonlocal spaces, connections to and coupling with local models, convergence and compatibility of numerical approximations, and various applications, such as nonlocal dynamics of anomalous diffusion and nonlocal peridynamic models of elasticity and fracture mechanics. A particular focus is on nonlocal systems with a finite range of interaction to illustrate their connection to local partial differential equations and fractional PDEs. These models are designed to represent nonlocal interactions explicitly and to remain valid for complex systems involving possible singular solutions and they have the potential to be alternatives for as well as bridges to existing models. The author discusses ongoing studies of nonlocal models to encourage the discovery of new mathematical theory for nonlocal continuum models and offer new perspectives on traditional models, analytical techniques, and algorithms.
Download or read book The Mathematics of Diffusion written by John Crank and published by Oxford University Press. This book was released on 1979 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.
Download or read book Distribution of Statistical Observables for Anomalous and Nonergodic Diffusions written by Weihua Deng and published by CRC Press. This book was released on 2022-04-11 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book investigates statistical observables for anomalous and nonergodic dynamics, focusing on the dynamical behaviors of particles modelled by non-Brownian stochastic processes in the complex real-world environment. Statistical observables are widely used for anomalous and nonergodic stochastic systems, thus serving as a key to uncover their dynamics. This study explores the cutting edge of anomalous and nonergodic diffusion from the perspectives of mathematics, computer science, statistical and biological physics, and chemistry. With this interdisciplinary approach, multiple physical applications and mathematical issues are discussed, including stochastic and deterministic modelling, analyses of (stochastic) partial differential equations (PDEs), scientific computations and stochastic analyses, etc. Through regularity analysis, numerical scheme design and numerical experiments, the book also derives the governing equations for the probability density function of statistical observables, linking stochastic processes with PDEs. The book will appeal to both researchers of electrical engineering expert in the niche area of statistical observables and stochastic systems and scientists in a broad range of fields interested in anomalous diffusion, especially applied mathematicians and statistical physicists.
Download or read book Nonlocal Diffusion and Applications written by Claudia Bucur and published by Springer. This book was released on 2016-04-08 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
Download or read book Fractional Order Systems written by Ivo Petráš and published by MDPI. This book was released on 2019-10-29 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is focused on fractional order systems. Historically, fractional calculus has been recognized since the inception of regular calculus, with the first written reference dated in September 1695 in a letter from Leibniz to L’Hospital. Nowadays, fractional calculus has a wide area of applications in areas such as physics, chemistry, bioengineering, chaos theory, control systems engineering, and many others. In all those applications, we deal with fractional order systems in general. Moreover, fractional calculus plays an important role even in complex systems and therefore allows us to develop better descriptions of real-world phenomena. On that basis, fractional order systems are ubiquitous, as the whole real world around us is fractional. Due to this reason, it is urgent to consider almost all systems as fractional order systems. This Special Issue explores applications of such systems to control, synchronization, and various mathematical models, as for instance, MRI, long memory process, diffusion.
Download or read book Stochastic Foundations in Movement Ecology written by Vicenç Méndez and published by Springer Science & Business Media. This book was released on 2013-09-18 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the fundamental theory for non-standard diffusion problems in movement ecology. Lévy processes and anomalous diffusion have shown to be both powerful and useful tools for qualitatively and quantitatively describing a wide variety of spatial population ecological phenomena and dynamics, such as invasion fronts and search strategies. Adopting a self-contained, textbook-style approach, the authors provide the elements of statistical physics and stochastic processes on which the modeling of movement ecology is based and systematically introduce the physical characterization of ecological processes at the microscopic, mesoscopic and macroscopic levels. The explicit definition of these levels and their interrelations is particularly suitable to coping with the broad spectrum of space and time scales involved in bio-ecological problems. Including numerous exercises (with solutions), this text is aimed at graduate students and newcomers in this field at the interface of theoretical ecology, mathematical biology and physics.
Download or read book Probability and Partial Differential Equations in Modern Applied Mathematics written by Edward C. Waymire and published by Springer Science & Business Media. This book was released on 2010-06-14 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Probability and Partial Differential Equations in Modern Applied Mathematics" is devoted to the role of probabilistic methods in modern applied mathematics from the perspectives of both a tool for analysis and as a tool in modeling. There is a recognition in the applied mathematics research community that stochastic methods are playing an increasingly prominent role in the formulation and analysis of diverse problems of contemporary interest in the sciences and engineering. A probabilistic representation of solutions to partial differential equations that arise as deterministic models allows one to exploit the power of stochastic calculus and probabilistic limit theory in the analysis of deterministic problems, as well as to offer new perspectives on the phenomena for modeling purposes. There is also a growing appreciation of the role for the inclusion of stochastic effects in the modeling of complex systems. This has led to interesting new mathematical problems at the interface of probability, dynamical systems, numerical analysis, and partial differential equations. This volume will be useful to researchers and graduate students interested in probabilistic methods, dynamical systems approaches and numerical analysis for mathematical modeling in the sciences and engineering.
Download or read book Thinking Probabilistically written by Ariel Amir and published by Cambridge University Press. This book was released on 2020-12-17 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory text providing the reader with a thorough background to the rich world of applications of stochastic processes.
Download or read book Mathematical Modeling written by Mark M. Meerschaert and published by Elsevier. This book was released on 2007-06-18 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Modeling, Third Edition is a general introduction to an increasingly crucial topic for today's mathematicians. Unlike textbooks focused on one kind of mathematical model, this book covers the broad spectrum of modeling problems, from optimization to dynamical systems to stochastic processes. Mathematical modeling is the link between mathematics and the rest of the world. Meerschaert shows how to refine a question, phrasing it in precise mathematical terms. Then he encourages students to reverse the process, translating the mathematical solution back into a comprehensible, useful answer to the original question. This textbook mirrors the process professionals must follow in solving complex problems. Each chapter in this book is followed by a set of challenging exercises. These exercises require significant effort on the part of the student, as well as a certain amount of creativity. Meerschaert did not invent the problems in this book--they are real problems, not designed to illustrate the use of any particular mathematical technique. Meerschaert's emphasis on principles and general techniques offers students the mathematical background they need to model problems in a wide range of disciplines. Increased support for instructors, including MATLAB material New sections on time series analysis and diffusion models Additional problems with international focus such as whale and dolphin populations, plus updated optimization problems
Download or read book Fractional Derivative Modeling in Mechanics and Engineering written by Wen Chen and published by Springer Nature. This book was released on 2022-02-26 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook highlights the theory of fractional calculus and its wide applications in mechanics and engineering. It describes in details the research findings in using fractional calculus methods for modeling and numerical simulation of complex mechanical behavior. It covers the mathematical basis of fractional calculus, the relationship between fractal and fractional calculus, unconventional statistics and anomalous diffusion, typical applications of fractional calculus, and the numerical solution of the fractional differential equation. It also includes latest findings, such as variable order derivative, distributed order derivative and its applications. Different from other textbooks in this subject, the book avoids lengthy mathematical demonstrations, and presents the theories in close connection to the applications in an easily readable manner. This textbook is intended for students, researchers and professionals in applied physics, engineering mechanics, and applied mathematics. It is also of high reference value for those in environmental mechanics, geotechnical mechanics, biomechanics, and rheology.
Download or read book Special Functions Fractional Calculus and the Pathway for Entropy written by Hans J. Haubold and published by MDPI. This book was released on 2018-03-23 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Special Functions: Fractional Calculus and the Pathway for Entropy Dedicated to Professor Dr. A.M. Mathai on the occasion of his 80th Birthday" that was published in Axioms