EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modeling and Simulation OfpMOSFET Hot carrier Degradation in Very Large CMOS Circuits

Download or read book Modeling and Simulation OfpMOSFET Hot carrier Degradation in Very Large CMOS Circuits written by Weishi Sun and published by . This book was released on 1995 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The goals of the research work presented in this thesis are to model submicron pMOS transistor hot-carrier degradation and to develop a fast reliability simulation tool for hot-carrier reliability analysis of CMOS VLSI circuits. This simulator should be able to handle very large submicrometer circuits accurately and efficiently. As device sizes shrink into the submicron region, pMOS transistor hot-carrier degradation becomes increasingly more important. There has not, however, been a widely accepted model for pMOS transistor hot-carrier degradation unlike that for nMOS transistors. Existing reliability simulations tools are primarily based on transistor level simulation and, therefore, can not handle large circuits efficiently. Using the fast-timing-based reliability simulator, ILLIADS-R, and the empirical model developed based on our experimental results, hot-carrier reliability can be well predicted. ILLIADS-R also serves as an integral part of the hierarchical design-for-reliability system. A new hot-carrier degradation model is developed for submicron pMOS transistors. Using this model, the pMOS transistor hot-carrier degradation can be predicted based on the total injected charge into the gate oxide region and the initial gate current under normal operating condition. This model is integrated into the fast-timing-based reliability simulation tool, ILLIADS-R. The simulation results demonstrate that ILLIADS-R outperforms the existing reliability simulator BERT in terms of simulation speed with a comparable accuracy. Also studied are the pMOS transistor subthreshold leakage characteristics as a function of hot-carrier stress conditions. It is shown that subthreshold leakage current is a future limit to the pMOS device lifetime.

Book Modeling and Simulation of PMOSFET Hot carrier Degradation in Very Large CMOS Circuits

Download or read book Modeling and Simulation of PMOSFET Hot carrier Degradation in Very Large CMOS Circuits written by Weishi Sun and published by . This book was released on 1995 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hot Carrier Degradation in Semiconductor Devices

Download or read book Hot Carrier Degradation in Semiconductor Devices written by Tibor Grasser and published by Springer. This book was released on 2014-10-29 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices. Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance.

Book Development of Mosfet Models Suitable for Simulation of Analog CMOS Circuits After Hot carrier Stress

Download or read book Development of Mosfet Models Suitable for Simulation of Analog CMOS Circuits After Hot carrier Stress written by Gürsel Düzenli and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The down-scaling of device dimensions in CMOS technology will improve performance and packing density for VLSI (Very Large Scale Integration) circuits, but it will negatively effect the quaIity of the circuits. Integrated circuits (ICs) are basically classified according to the electrical function they perform. Integrated circuits performing nominally the same function, however, do not necessarily perform it equally well. The concept of quality is used to express how well the required function is performed. An operational amplifier is of higher quality İf it has a higher gain, wider frequency bandwidth, etc. These characteristics can be regarded as conformance figures. The conformance is, however, only one side of the quality. On the other side is the issue of how Iong the device or circuit will exhibit the initial performance figures. The concept of reliabillty is used to express this time dimension of the quality . Measurement and presentation of the conformance figures are straightforward; any conformance parameter can be measured directly and its value expressed. The situation is, however, different from determination and presentation of the reliability. The reliabilİty depends, in principle, on application conditions, which means it is not possible to establish an exact and unique reliability figure for a given device or IC. In addition, the reliability, determination itself, regardless of the application conditions used, cannot be made by direct measurements. This is mainly because of practical constraints. Theoretically, it is possible to determine the mean time to failure directly if a corresponding number of device or ICs are exposed to working conditions and times to failure of each of them are recorded. This is, however, practically meaningless; such a test would last for tens of years, and by the time the data are collected nobody would be interested in them. That is why accelerated tests have to be applied to obtain the results in a reasonable time of 1 or 2 months. The failures in ICs can be classified in at least three different ways: according to failure modes, according to failure mechanisms, and according to failure causes. The failure mode is the observed result of a failure, such as an open circuit, short circuit, or parameter degradation. The failure mechanism is the phyical, chemical, or other process that results in a failure. Finally , the failure cause is a circumstance during design, production, testing, or operation that initates or contributes to a failure mechanism. The focus of this study is the modeling of parameter degradation reliability of p- MOS and n-MOS transistors due to the hot-carriers under analog operation. Hot- carrier failure cause can initiate the electron/holetrapping/generation and/or interface trap creation mechanism leading to changes of oxide charge and trap densities during device operation. A lot of efforts have been devoted to study the mechanisms due to the hot-carrier and modeling the device degradation due to these effects. However , these modelings are often performed on digital applications. Analog applications differ from digital ones by a number of points. Analog circuit reliability prediction has to take analog circuit design variables such as channel length, biasing conditions, and circuit topography into consideration. In order to achieve highest possible speed, smallest area and smallest power consumption usually L=Lmin are chosen for digital applications. However, for nearly all-analog applications this choice is inadequate. In order to improve matching and noise behavior, channel lengths usually need to be chosen several times Lmin. For those greater lengths also the small-signal parameters especially the drain conductance, are largely improved. However, because analog circuits usually use long-channel devices, the influence of hot-carrier effects on analog circuit performance has been believed to be minimal and, as a result, has been mostly overlooked. Therefore, the most important device parameters in these two application fields do not coincide. For example, power supply scaling for analog circuİts will not likely be as aggressive as for digital circuits, because submicron devices are necessary for high speed applications. However , the operation of analog circuits is sensitive to device parameter variations. Furthermore, device parameter variations depend on the specific application of a given analog circuit. The proposed models combines the advantages of the parameter fitting method and so-called AId model. The essence of the model is the translation of the physical W,mechanisms leading to degradation into the MOSFET model equations correct place via an empirical description. Because of the correct place of the empirical description in the MOSFET model equations the parameter extraction will be as simple as that of the so-called LlIo model. The empirical description was found from different degradations and fresh devices, so the accuracy is as high as that of the parameter fitting method. Furthermore, the general structure of the empirical description is independent of the process technology. Therefore, it does not impose a much higher requirement on device engineer . Another important feature of the proposed models is the prediction of the device lifetime at real life. This is an important feature because most of the developed degradation models are not able to predict the device lifetime. Therefore, several extrapolation laws to calculate the Iifetime have been developed. But, most of the developed lifetime prediction models are developed for digital applications. However, when the same lifetime prediction models are applied to analog applications, gross lifetime prediction error results. This is because the stress conditions are totally different in analog applications compared to digital applications. The proposed model includes a hot-carrier degradation model and a lifetime prediction model as a single model suitable for analog applications. The accuracy of the presented models has been verified with experimental data.

Book Modeling and Simulation of Hot carrier Effects in MOS Devices and Circuits

Download or read book Modeling and Simulation of Hot carrier Effects in MOS Devices and Circuits written by Peter Maurice Lee and published by . This book was released on 1990 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Simulation Model for Hot carrier induced Degradation of CMOS Analog Circuits

Download or read book Simulation Model for Hot carrier induced Degradation of CMOS Analog Circuits written by Wilson Yap Chan and published by . This book was released on 1994 with total page 48 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fundamentals of Modern VLSI Devices

Download or read book Fundamentals of Modern VLSI Devices written by Yuan Taur and published by Cambridge University Press. This book was released on 2013-05-02 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the basic properties and designs of modern VLSI devices, as well as the factors affecting performance, with this thoroughly updated second edition. The first edition has been widely adopted as a standard textbook in microelectronics in many major US universities and worldwide. The internationally renowned authors highlight the intricate interdependencies and subtle trade-offs between various practically important device parameters, and provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices. Equations and parameters provided are checked continuously against the reality of silicon data, making the book equally useful in practical transistor design and in the classroom. Every chapter has been updated to include the latest developments, such as MOSFET scale length theory, high-field transport model and SiGe-base bipolar devices.

Book CMOS Logic Circuit Design

Download or read book CMOS Logic Circuit Design written by John P. Uyemura and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an up-to-date treatment of the analysis and design of CMOS integrated digital logic circuits. The self-contained book covers all of the important digital circuit design styles found in modern CMOS chips, emphasizing solving design problems using the various logic styles available in CMOS.

Book Polysilicon Emitter Bipolar Transistors

Download or read book Polysilicon Emitter Bipolar Transistors written by Ashok K. Kapoor and published by New York : IEEE Press. This book was released on 1989 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: