Download or read book Best Practices in Physics based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations written by Luis A. Dalguer and published by Birkhäuser. This book was released on 2017-12-20 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects several extended articles from the first workshop on Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations (BestPSHANI). Held in 2015, the workshop was organized by the IAEA to disseminate the use of physics-based fault-rupture models for ground motion prediction in seismic hazard assessments (SHA). The book also presents a number of new contributions on topics ranging from the seismological aspects of earthquake cycle simulations for source scaling evaluation, seismic source characterization, source inversion and physics-based ground motion modeling to engineering applications of simulated ground motion for the analysis of seismic response of structures. Further, it includes papers describing current practices for assessing seismic hazard in terms of nuclear safety in low seismicity areas, and proposals for physics-based hazard assessment for critical structures near large earthquakes. The papers validate and verify the models by comparing synthetic results with observed data and empirical models. The book is a valuable resource for scientists, engineers, students and practitioners involved in all aspects of SHA.
Download or read book Encyclopedia of Earthquake Engineering written by Michael Beer and published by Springer. This book was released on 2016-01-30 with total page 3953 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 300 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well informed without needing to deal with the details of specialist understanding. The encyclopedia’s content provides technically-inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encyclopedia also aims to provide cross-disciplinary and cross-domain information to domain-experts. This is the first single reference encyclopedia of this breadth and scope that brings together the science, engineering and technological aspects of earthquakes and structures.
Download or read book Living on an Active Earth written by National Research Council and published by National Academies Press. This book was released on 2003-09-22 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: The destructive force of earthquakes has stimulated human inquiry since ancient times, yet the scientific study of earthquakes is a surprisingly recent endeavor. Instrumental recordings of earthquakes were not made until the second half of the 19th century, and the primary mechanism for generating seismic waves was not identified until the beginning of the 20th century. From this recent start, a range of laboratory, field, and theoretical investigations have developed into a vigorous new discipline: the science of earthquakes. As a basic science, it provides a comprehensive understanding of earthquake behavior and related phenomena in the Earth and other terrestrial planets. As an applied science, it provides a knowledge base of great practical value for a global society whose infrastructure is built on the Earth's active crust. This book describes the growth and origins of earthquake science and identifies research and data collection efforts that will strengthen the scientific and social contributions of this exciting new discipline.
Download or read book Strong Ground Motion Seismology written by Mustafa Erdik and published by Taylor & Francis. This book was released on 1987-07-31 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the NATO Advanced Study Institute, Ankara, Turkey, June 10-21, 1985
Download or read book Extreme Environmental Events written by and published by . This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction To Computational Earthquake Engineering 2nd Edition written by Muneo Hori and published by World Scientific. This book was released on 2011-05-18 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Computational Earthquake Engineering covers solid continuum mechanics, finite element method and stochastic modeling comprehensively, with the second and third chapters explaining the numerical simulation of strong ground motion and faulting, respectively. Stochastic modeling is used for uncertain underground structures, and advanced analytical methods for linear and non-linear stochastic models are presented. The verification of these methods by comparing the simulation results with observed data is then presented, and examples of numerical simulations which apply these methods to practical problems are generously provided. Furthermore three advanced topics of computational earthquake engineering are covered, detailing examples of applying computational science technology to earthquake engineering problems.
Download or read book Strong Ground Motion Simulation and Earthquake Engineering Applications written by Roger E. Scholl and published by . This book was released on 1985 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Advances in Structural Engineering written by Vasant Matsagar and published by Springer. This book was released on 2014-12-12 with total page 873 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents research papers presented by academicians, researchers, and practicing structural engineers from India and abroad in the recently held Structural Engineering Convention (SEC) 2014 at Indian Institute of Technology Delhi during 22 – 24 December 2014. The book is divided into three volumes and encompasses multidisciplinary areas within structural engineering, such as earthquake engineering and structural dynamics, structural mechanics, finite element methods, structural vibration control, advanced cementitious and composite materials, bridge engineering, and soil-structure interaction. Advances in Structural Engineering is a useful reference material for structural engineering fraternity including undergraduate and postgraduate students, academicians, researchers and practicing engineers.
Download or read book Stochastic Calculus for Fractional Brownian Motion and Applications written by Francesca Biagini and published by Springer Science & Business Media. This book was released on 2008-02-17 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches. Readers are assumed to be familiar with probability theory and stochastic analysis, although the mathematical techniques used in the book are thoroughly exposed and some of the necessary prerequisites, such as classical white noise theory and fractional calculus, are recalled in the appendices. This book will be a valuable reference for graduate students and researchers in mathematics, biology, meteorology, physics, engineering and finance.
Download or read book Stochastic Model for Earthquake Ground Motion Using Wavelet Packets written by Yoshifumi Yamamoto and published by Stanford University. This book was released on 2011 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: For performance-based design, nonlinear dynamic structural analysis for various types of input ground motions is required. Stochastic (simulated) ground motions are sometimes useful as input motions, because unlike recorded motions they are not limited in number and because their properties can be varied systematically to study the impact of ground motion properties on structural response. This dissertation describes an approach by which the wavelet packet transform can be used to characterize complex time-varying earthquake ground motions, and it illustrates the potential benefits of such an approach in a variety of earthquake engineering applications. The proposed model is based on Thr´ainsson and Kiremidjian (2002), which use Fourier amplitudes and phase differences to simulate ground motions and attenuation models to their model parameters. We extend their model using wavelet packet transform since it can control the time and frequency characteristic of time series. The time- and frequency-varying properties of real ground motions can be captured using wavelet packets, so a model is developed that requires only 13 parameters to describe a given ground motion. These 13 parameters are then related to seismological variables such as earthquake magnitude, distance, and site condition, through regression analysis that captures trends in mean values, standard deviations and correlations of these parameters observed in a large database of recorded strong ground motions. The resulting regression equations then form a model that can be used to predict ground motions for a future earthquake scenario; this model is analogous to widely used empirical ground motion prediction models (formerly called "attenuation models") except that this model predicts entire time series rather than only response spectra. The ground motions produced using this predictive model are explored in detail, and are shown to have elastic response spectra, inelastic response spectra, durations, mean periods, etc., that are consistent in both mean and variability to existing published predictive models for those properties. That consistency allows the proposed model to be used in place of existing models for probabilistic seismic hazard analysis (PSHA) calculations. This new way to calculate PSHA is termed "simulation-based probabilistic seismic hazard analysis" and it allows a deeper understanding of ground motion hazard and hazard deaggregation than is possible with traditional PSHA because it produces a suite of potential ground motion time histories rather than simply a distribution of response spectra. The potential benefits of this approach are demonstrated and explored in detail. Taking this analysis even further, this suite of time histories can be used as input for nonlinear dynamic analysis of structures, to perform a risk analysis (i.e., "probabilistic seismic demand analysis") that allows computation of the probability of the structure exceeding some level of response in a future earthquake. These risk calculations are often performed today using small sets of scaled recorded ground motions, but that approach requires a variety of assumptions regarding important properties of ground motions, the impacts of ground motion scaling, etc. The approach proposed here facilitates examination of those assumptions, and provides a variety of other relevant information not obtainable by that traditional approach.
Download or read book Technical Report Characterization of Ground Motions During the Northridge Earthquake of January 17 1994 written by Paul Sommerville and published by . This book was released on 1995 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Earthquake Resistant Engineering Structures VIII written by C. A. Brebbia and published by WIT Press. This book was released on 2011 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to protect the built environment in earthquake-prone regions of the world It is important to retrofit and rehabilitate existing structures and infrastructure, as well as to ensure the optimal design and construction of new facilities. The high stakes in human life and property in urban densely populated urban areas has been driving research on advances in this field. These advances are presented biennially at a conference organized by the Wessex Institute of Technology. This book contains the papers from the latest conference in the series, which began in 1991. The papers cover Geographical and geotechnical engineering; Seismic hazard and vulnerability; Seismic isolation and energy dissipation; Structural dynamics; Building performance during earthquakes; Retrofitting; Lifelines; Material mechanics and characterisation; Nonlinear numerical analysis; Performance based design; Experimental studies; Safety and security; and Innovative technologies.
Download or read book Spatial Variation of Seismic Ground Motions written by Aspasia Zerva and published by CRC Press. This book was released on 2016-04-19 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: The spatial variation of seismic ground motions denotes the differences in the seismic time histories at various locations on the ground surface. This text focuses on the spatial variability of the motions that is caused by the propagation of the waveforms from the earthquake source through the earth strata to the ground surface, and it brings toge
Download or read book Engineering Seismology Geotechnical and Structural Earthquake Engineering written by Sebastiano D'Amico and published by BoD – Books on Demand. This book was released on 2013-03-20 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mitigation of earthquake-related hazards represents a key role in the modern society. The mitigation of such kind of hazards spans from detailed studies on seismicity, evaluation of site effects, and seismo-induced landslides, tsunamis as well as and the design and analysis of structures to resist such actions. The study of earthquakes ties together science, technology and expertise in infrastructure and engineering in an effort to minimize human and material losses when they inevitably occur. Chapters deal with different topics aiming to mitigate geo-hazards such as: Seismic hazard analysis, Ground investigation for seismic design, Seismic design, assessment and remediation, Earthquake site response analysis and soil-structure interaction analysis.
Download or read book Geotechnical Earthquake Engineering written by Steven L. Kramer and published by CRC Press. This book was released on 2024-11-29 with total page 1061 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fully updated second edition provides an introduction to geotechnical earthquake engineering for first-year graduate students in geotechnical or earthquake engineering graduate programs with a level of detail that will also be useful for more advanced students as well as researchers and practitioners. It begins with an introduction to seismology and earthquake ground motions, then presents seismic hazard analysis and performance-based earthquake engineering (PBEE) principles. Dynamic soil properties pertinent to earthquake engineering applications are examined, both to facilitate understanding of soil response to seismic loads and to describe their practical measurement as part of site characterization. These topics are followed by site response and its analysis and soil–structure interaction. Ground failure in the form of soil liquefaction, cyclic softening, surface fault rupture, and seismically induced landslides are also addressed, and the book closes with a chapter on soil improvement and hazard mitigation. The first edition has been widely used around the world by geotechnical engineers as well as many seismologists and structural engineers. The main text of this book and the four appendices: • Cover fundamental concepts in applied seismology, geotechnical engineering, and structural dynamics. • Contain numerous references for further reading, allowing for detailed exploration of background or more advanced material. • Present worked example problems that illustrate the application of key concepts emphasized in the text. • Include chapter summaries that emphasize the most important points. • Present concepts of performance-based earthquake engineering with an emphasis on uncertainty and the types of probabilistic analyses needed to implement PBEE in practice. • Present a broad, interdisciplinary narrative, drawing from the fields of seismology, geotechnical engineering, and structural engineering to facilitate holistic understanding of how geotechnical earthquake engineering is applied in seismic hazard and risk analyses and in seismic design.
Download or read book Energy Research Abstracts written by and published by . This book was released on 1986 with total page 876 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Earthquake Data in Engineering Seismology written by Sinan Akkar and published by Springer Science & Business Media. This book was released on 2011-01-03 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses current activities in strong-motion networks around the globe, covering issues related to designing, maintaining and disseminating information from these arrays. The book is divided into three principal sections. The first section includes recent developments in regional and global ground-motion predictive models. It presents discussions on the similarities and differences of ground motion estimations from these models and their application to design spectra as well as other novel procedures for predicting engineering parameters in seismic regions with sparse data. The second section introduces topics about the particular methodologies being implemented in the recently established global and regional strong-motion databanks in Europe to maintain and disseminate the archived accelerometric data. The final section describes major strong-motion arrays around the world and their historical developments. The last three chapters of this section introduce projects carried out within the context of arrays deployed for seismic risk studies in metropolitan areas. Audience: This timely book will be of particular interest for researchers who use accelerometric data extensively to conduct studies in earthquake engineering and engineering seismology.