EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modeling and Control of Post combustion Co2 Capture Process Integrated with a 550mwe Supercritical Coal fired Power Plant

Download or read book Modeling and Control of Post combustion Co2 Capture Process Integrated with a 550mwe Supercritical Coal fired Power Plant written by Qiang Zhang and published by . This book was released on 2016 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Process Systems and Materials for CO2 Capture

Download or read book Process Systems and Materials for CO2 Capture written by Athanasios I. Papadopoulos and published by John Wiley & Sons. This book was released on 2017-05-01 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive volume brings together an extensive collection of systematic computer-aided tools and methods developed in recent years for CO2 capture applications, and presents a structured and organized account of works from internationally acknowledged scientists and engineers, through: Modeling of materials and processes based on chemical and physical principles Design of materials and processes based on systematic optimization methods Utilization of advanced control and integration methods in process and plant-wide operations The tools and methods described are illustrated through case studies on materials such as solvents, adsorbents, and membranes, and on processes such as absorption / desorption, pressure and vacuum swing adsorption, membranes, oxycombustion, solid looping, etc. Process Systems and Materials for CO2 Capture: Modelling, Design, Control and Integration should become the essential introductory resource for researchers and industrial practitioners in the field of CO2 capture technology who wish to explore developments in computer-aided tools and methods. In addition, it aims to introduce CO2 capture technologies to process systems engineers working in the development of general computational tools and methods by highlighting opportunities for new developments to address the needs and challenges in CO2 capture technologies.

Book AN INTEGRATED MODELING FRAMEWORK FOR CARBON MANAGEMENT TECHNOLOGIES

Download or read book AN INTEGRATED MODELING FRAMEWORK FOR CARBON MANAGEMENT TECHNOLOGIES written by and published by . This book was released on 2004 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: CO2 capture and storage (CCS) is gaining widespread interest as a potential method to control greenhouse gas emissions from fossil fuel sources, especially electric power plants. Commercial applications of CO2 separation and capture technologies are found in a number of industrial process operations worldwide. Many of these capture technologies also are applicable to fossil fuel power plants, although applications to large-scale power generation remain to be demonstrated. This report describes the development of a generalized modeling framework to assess alternative CO2 capture and storage options in the context of multi-pollutant control requirements for fossil fuel power plants. The focus of the report is on post-combustion CO2 capture using amine-based absorption systems at pulverized coal-fired plants, which are the most prevalent technology used for power generation today. The modeling framework builds on the previously developed Integrated Environmental Control Model (IECM). The expanded version with carbon sequestration is designated as IECM-cs. The expanded modeling capability also includes natural gas combined cycle (NGCC) power plants and integrated coal gasification combined cycle (IGCC) systems as well as pulverized coal (PC) plants. This report presents details of the performance and cost models developed for an amine-based CO2 capture system, representing the baseline of current commercial technology. The key uncertainties and variability in process design, performance and cost parameters which influence the overall cost of carbon mitigation also are characterized. The new performance and cost models for CO2 capture systems have been integrated into the IECM-cs, along with models to estimate CO2 transport and storage costs. The CO2 control system also interacts with other emission control technologies such as flue gas desulfurization (FGD) systems for SO2 control. The integrated model is applied to study the feasibility and cost of carbon capture and sequestration at both new and existing PC plants as well as new NGCC plants. The cost of CO2 avoidance using amine-based CO2 capture technology is found to be sensitive to assumptions about the reference plant design and operation, as well as assumptions about the CO2 capture system design. The case studies also reveal multi-pollutant interactions and potential tradeoffs in the capture of CO2, SO2, NO2 and NH3. The potential for targeted R & D to reduce the cost of CO2 capture also is explored using the IECM-cs in conjunction with expert elicitations regarding potential improvements in key performance and cost parameters of amine-based systems. The results indicate that the performance of amine-based CO2 capture systems can be improved significantly, and the cost of CO2 capture reduced substantially over the next decade or two, via innovations such as new or improved sorbents with lower regeneration heat requirements, and improvements in power plant heat integration to reduce the (currently large) energy penalty of CO2 capture. Future work will explore in more detail a broader set of advanced technology options to lower the costs of CO2 capture and storage. Volume 2 of this report presents a detailed User's Manual for the IECM-cs computer model as a companion to the technical documentation in Volume 1.

Book 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering

Download or read book 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering written by and published by Elsevier. This book was released on 2015-07-14 with total page 2667 pages. Available in PDF, EPUB and Kindle. Book excerpt: 25th European Symposium on Computer-Aided Process Engineering contains the papers presented at the 12th Process Systems Engineering (PSE) and 25th European Society of Computer Aided Process Engineering (ESCAPE) Joint Event held in Copenhagen, Denmark, 31 May - 4 June 2015. The purpose of these series is to bring together the international community of researchers and engineers who are interested in computing-based methods in process engineering. This conference highlights the contributions of the PSE/CAPE community towards the sustainability of modern society. Contributors from academia and industry establish the core products of PSE/CAPE, define the new and changing scope of our results, and future challenges. Plenary and keynote lectures discuss real-world challenges (globalization, energy, environment, and health) and contribute to discussions on the widening scope of PSE/CAPE versus the consolidation of the core topics of PSE/CAPE. - Highlights how the Process Systems Engineering/Computer-Aided Process Engineering community contributes to the sustainability of modern society - Presents findings and discussions from both the 12th Process Systems Engineering (PSE) and 25th European Society of Computer-Aided Process Engineering (ESCAPE) Events - Establishes the core products of Process Systems Engineering/Computer Aided Process Engineering - Defines the future challenges of the Process Systems Engineering/Computer Aided Process Engineering community

Book Post Combustion CO2 Capture  Energetic Evaluation of Chemical Absorption Processes in Coal Fired Steam Power Plants

Download or read book Post Combustion CO2 Capture Energetic Evaluation of Chemical Absorption Processes in Coal Fired Steam Power Plants written by Jochen Oexmann and published by Cuvillier Verlag. This book was released on 2011-01-19 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work, a semi-empirical column model is developed to represent absorber and desorber columns of post-combustion CO2 capture processes in coal-fired steam power plants. The chemical solvents are represented by empirical correlations on the basis of fundamental measurement data (CO2 solubility, heat capacity, density). The model of a CO2 capture process including the column model is coupled to detailed models of a hard-coal-fired steam power plant and of a CO2 compressor to evaluate and compare the impact of CO2 capture using six different solvents on the overall power plant process.

Book Absorption Based Post Combustion Capture of Carbon Dioxide

Download or read book Absorption Based Post Combustion Capture of Carbon Dioxide written by Paul Feron and published by Woodhead Publishing. This book was released on 2016-05-27 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt: Absorption-Based Post-Combustion Capture of Carbon Dioxide provides a comprehensive and authoritative review of the use of absorbents for post-combustion capture of carbon dioxide. As fossil fuel-based power generation technologies are likely to remain key in the future, at least in the short- and medium-term, carbon capture and storage will be a critical greenhouse gas reduction technique. Post-combustion capture involves the removal of carbon dioxide from flue gases after fuel combustion, meaning that carbon dioxide can then be compressed and cooled to form a safely transportable liquid that can be stored underground. - Provides researchers in academia and industry with an authoritative overview of the amine-based methods for carbon dioxide capture from flue gases and related processes - Editors and contributors are well known experts in the field - Presents the first book on this specific topic

Book CO2 Capture with MEA

    Book Details:
  • Author : Colin F. Alie
  • Publisher :
  • Release : 2004
  • ISBN :
  • Pages : pages

Download or read book CO2 Capture with MEA written by Colin F. Alie and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In Canada, coal-fired power plants are the largest anthropogenic point sources of atmospheric CO2. The most promising near-term strategy for mitigating CO2 emissions from these facilities is the post-combustion capture of CO2 using MEA (monoethanolamine) with subsequent geologic sequestration. While MEA absorption of CO2 from coal-derived flue gases on the scale proposed above is technologically feasible, MEA absorption is an energy intensive process and especially requires large quantities of low-pressure steam. It is the magnitude of the cost of providing this supplemental energy that is currently inhibiting the deployment of CO2 capture with MEA absorption as means of combatting global warming. The steam cycle of a power plant ejects large quantities of low-quality heat to the surroundings. Traditionally, this waste has had no economic value. However, at different times and in different places, it has been recognized that the diversion of lower quality streams could be beneficial, for example, as an energy carrier for district heating systems. In a similar vein, using the waste heat from the power plant steam cycle to satisfy the heat requirements of a proposed CO2 capture plant would reduce the required outlay for supplemental utilities; the economic barrier to MEA absorption could be removed. In this thesis, state-of-the-art process simulation tools are used to model coal combustion, steam cycle, and MEA absorption processes. These disparate models are then combined to create a model of a coal-fired power plant with integrated CO2 capture. A sensitivity analysis on the integrated model is performed to ascertain the process variables which most strongly influence the CO2 energy penalty. From the simulation results with this integrated model, it is clear that there is a substantial thermodynamic advantage to diverting low-pressure steam from the steam cycle for use in the CO2 capture plant. During the course of the investigation, methodologies for using Aspen Plus® to predict column pressure profiles and for converging the MEA absorption process flowsheet were developed and are herein presented.

Book CO2 Capture With MEA  electronic Resource    Integrating the Absorption Process and Steam Cycle of an Existing Coal Fired Power Plant

Download or read book CO2 Capture With MEA electronic Resource Integrating the Absorption Process and Steam Cycle of an Existing Coal Fired Power Plant written by Colin F. Alie and published by University of Waterloo. This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In Canada, coal-fired power plants are the largest anthropogenic point sources of atmospheric CO2. The most promising near-term strategy for mitigating CO2 emissions from these facilities is the post-combustion capture of CO2 using MEA (monoethanolamine) with subsequent geologic sequestration. While MEA absorption of CO2 from coal-derived flue gases on the scale proposed above is technologically feasible, MEA absorption is an energy intensive process and especially requires large quantities of low-pressure steam. It is the magnitude of the cost of providing this supplemental energy that is currently inhibiting the deployment of CO2 capture with MEA absorption as means of combatting global warming. The steam cycle of a power plant ejects large quantities of low-quality heat to the surroundings. Traditionally, this waste has had no economic value. However, at different times and in different places, it has been recognized that the diversion of lower quality streams could be beneficial, for example, as an energy carrier for district heating systems. In a similar vein, using the waste heat from the power plant steam cycle to satisfy the heat requirements of a proposed CO2 capture plant would reduce the required outlay for supplemental utilities; the economic barrier to MEA absorption could be removed. In this thesis, state-of-the-art process simulation tools are used to model coal combustion, steam cycle, and MEA absorption processes. These disparate models are then combined to create a model of a coal-fired power plant with integrated CO2 capture. A sensitivity analysis on the integrated model is performed to ascertain the process variables which most strongly influence the CO2 energy penalty. From the simulation results with this integrated model, it is clear that there is a substantial thermodynamic advantage to diverting low-pressure steam from the steam cycle for use in the CO2 capture plant. During the course of the investigation, methodologies for using Aspen Plus® to predict column pressure profiles and for converging the MEA absorption process flowsheet were developed and are herein presented.

Book Modelling and Optimisation of Post combustion Carbon Capture Process Integrated with Coal fired Power Plant Using Computational Intelligence Techniques

Download or read book Modelling and Optimisation of Post combustion Carbon Capture Process Integrated with Coal fired Power Plant Using Computational Intelligence Techniques written by Fei Li and published by . This book was released on 2018 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modelling  Scheduling and Control of Pilot scale and Commercial scale MEA based CO2 Capture Plants

Download or read book Modelling Scheduling and Control of Pilot scale and Commercial scale MEA based CO2 Capture Plants written by Zhenrong He and published by . This book was released on 2017 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent reports have shown that global population is rising and more fossil fuels, such as coal and natural gas, are required to meet the global energy demands. The adverse effect of burning fossil fuels has become a concern due to its contribution to global warming and increasing emissions of greenhouse gases, particularly CO2, have been regarded as a main cause for the rising temperature of the earth's surface. To partially address this pressing social problem, CO2 capture technology, which has been considered as an efficient and feasible technology to reduce global CO2 emissions, has been deeply explored and tested over the last decades. Among several available CO2 capture technologies, the MEA-based post-combustion CO2 capture process is considered a mature technology for mitigating CO2 emissions due to its inherent benefits, e.g. high CO2 capture capacity, low price of MEA solvent and fast kinetics. However, a large amount of energy is required to regenerate MEA solvent. Thus, the efficiency of fossil fuel-fired power plants decreases. In addition, the dynamic operation of the CO2 capture process needs to be explored in more detail to analyze the transient operation of this plant and its interaction with the operation of the fossil fuel-fired power plants. Thus, the development of MEA-based CO2 capture technology has gained attention. Based on above, in the present study, a dynamic model of a pilot-scale MEA-based CO2 capture plant was first developed and a flexibility analysis under critical operating conditions was performed followed by an implementation of simultaneous scheduling and control using the proposed dynamic model. Based on the pilot-scale CO2 capture plant, a natural gas power plant integrated with a commercial-scale MEA-based post-combustion CO2 capture process was developed. The proposed model was used to perform a flexibility analysis on the integrated systems. This study first presents a dynamic flexibility analysis of a pilot-scale post-combustion CO2 capture plant using MPC. The critical operating conditions in the plant's main load (flue gas flowrate) were initially identified in open-loop and closed-loop. Insights from this analysis have shown that oscillatory changes with high frequencies content in the load are particularly harmful to the system in closed-loop. Taking these insights into account, a simultaneous scheduling and control framework was developed to identify optimal operating policies under the critical operating conditions in the flue gas flowrate. The results obtained from this framework were compared against a sequential scheduling and control approach. The results show that the proposed integrated framework specifies more economically attractive operating policies than those obtained from the sequential approach. Furthermore, a model describing the dynamic operation of a 453 MWe NGCC power plant integrated with a commercial-scale post-combustion CO2 capture plant has been developed. The proposed model has been used to evaluate the dynamic performance of the integrated process under various scenarios, e.g. changes in the reboiler heat duty and power plant inputs. In addition, the transient operation of the integrated plant using a pre-defined (scheduled) trajectory profile in the consumption of steam in the reboiler unit has been compared to the case of constant withdrawal of steam from the power plant. The results show that a coordinated effort between the two plants is needed to run the integrated plant efficiently and at near optimal economic points under changes in power demands. In the present work, flexibility analysis and scheduling and control have been performed based on the proposed pilot-scale CO2 capture process. Furthermore, the dynamic behaviour of the natural gas power plant integrated with the commercial-scale CO2 capture plant was assessed under several scenarios that are likely to occur during operation. The insights gained through these analyses will be instrumental to design basic and advanced control and scheduling strategies for integrated NGCC-CO2 capture plants.

Book 23 European Symposium on Computer Aided Process Engineering

Download or read book 23 European Symposium on Computer Aided Process Engineering written by Grégoire Léonard and published by Elsevier Inc. Chapters. This book was released on 2013-06-10 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt: A dynamic model of a post-combustion capture pilot plant is developed using Aspen Plus Dynamics. An innovative process control strategy is studied for regulating the water balance of the process. A washing section where the flue gas from the absorber is washed with cold water is included to the process in order to reduce the emissions of amine to the air. Control of the water balance in the solvent loop is successfully achieved by changing the washing water temperature. In previous publications regarding CO2 capture pilot plants, the regulation of the water balance always required a water make-up flow which appears here as unnecessary. Rejection of disturbances and different load reduction scenarios are tested to confirm the efficiency of this strategy. Potential operational problems of this control strategy are identified and solved.

Book Development of a Novel Gas Pressurized Process Based Technology for CO2 Capture from Post Combustion Flue Gases Preliminary Year 1 Techno Economic Study Results and Methodology for Gas Pressurized Stripping Process

Download or read book Development of a Novel Gas Pressurized Process Based Technology for CO2 Capture from Post Combustion Flue Gases Preliminary Year 1 Techno Economic Study Results and Methodology for Gas Pressurized Stripping Process written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Under the DOE's Innovations for Existing Plants (IEP) Program, Carbon Capture Scientific, LLC (CCS) is developing a novel gas pressurized stripping (GPS) process to enable efficient post-combustion carbon capture (PCC) from coal-fired power plants. A technology and economic feasibility study is required as a deliverable in the project Statement of Project Objectives. This study analyzes a fully integrated pulverized coal power plant equipped with GPS technology for PCC, and is carried out, to the maximum extent possible, in accordance to the methodology and data provided in ATTACHMENT 3 - Basis for Technology Feasibility Study of DOE Funding Opportunity Number: DE-FOA-0000403. The DOE/NETL report on "Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity (Original Issue Date, May 2007), NETL Report No. DOE/NETL-2007/1281, Revision 1, August 2007" was used as the main source of reference to be followed, as per the guidelines of ATTACHMENT 3 of DE-FOA-0000403. The DOE/NETL-2007/1281 study compared the feasibility of various combinations of power plant/CO2 capture process arrangements. The report contained a comprehensive set of design basis and economic evaluation assumptions and criteria, which are used as the main reference points for the purpose of this study. Specifically, Nexant adopted the design and economic evaluation basis from Case 12 of the above-mentioned DOE/NETL report. This case corresponds to a nominal 550 MWe (net), supercritical greenfield PC plant that utilizes an advanced MEAbased absorption system for CO2 capture and compression. For this techno-economic study, CCS' GPS process replaces the MEA-based CO2 absorption system used in the original case. The objective of this study is to assess the performance of a full-scale GPS-based PCC design that is integrated with a supercritical PC plant similar to Case 12 of the DOE/NETL report, such that it corresponds to a nominal 550 MWe supercritical PC plant with 90% CO2 capture. This plant has the same boiler firing rate and superheated high pressure steam generation as the DOE/NETL report's Case 12 PC plant. However, due to the difference in performance between the GPS-based PCC and the MEA-based CO2 absorption technology, the net power output of this plant may not be exactly at 550 MWe.

Book Post combustion CO2 Capture Technology

Download or read book Post combustion CO2 Capture Technology written by Helei Liu and published by Springer. This book was released on 2018-09-25 with total page 55 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of the latest information on all aspects of the post-combustion carbon capture process. It provides designers and operators of amine solvent-based CO2 capture plants with an in-depth understanding of the most up-to-date fundamental chemistry and physics of the CO2 absorption technologies using amine-based reactive solvents. Topics covered include the physical properties, chemical analysis, reaction kinetics, CO2 solubility, and innovative configurations of absorption and stripping columns as well as information on technology applications. This book also examines the post-build operational issues of corrosion prevention and control, solvent management, solvent stability, solvent recycling and reclaiming, intelligent monitoring and plant control including process automation. In addition, the authors discuss the recent insights into the theoretical basis of plant operation in terms of thermodynamics, transport phenomena, chemical reaction kinetics/engineering, interfacial phenomena, and materials. The insights provided help engineers, scientists, and decision makers working in academia, industry and government gain a better understanding of post-combustion carbon capture technologies.

Book Carbon Capture and Storage Including Coal fired Power Plants

Download or read book Carbon Capture and Storage Including Coal fired Power Plants written by Todd P. Carington and published by . This book was released on 2010 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nationally-recognised studies and our contacts with a diverse group of industry representatives, non-governmental organisations, and academic researchers show that key barriers to CCS deployment include (1) underdeveloped and costly CO2 capture technology and (2) regulatory and legal uncertainties over CO2 capture, injection, and storage. Among the key technological barriers are a lack of experience in capturing significant amounts of CO2 from power plants and the significant cost of capturing CO2, particularly from existing coal-fired power plants, which are the single largest source of CO2 emissions in the United States. Compounding these technological issues are regulatory and legal uncertainties, including uncertainty regarding liability for CO2 leakage and ownership of CO2 once injected. According to the IPCC, the National Academy of Sciences, and other knowledgeable authorities, another barrier is the absence of a national strategy to control CO2 emissions (emissions trading plan, CO2 emissions tax, or other mandatory control of CO2 emissions), without which the electric utility industry has little incentive to capture and store its CO2 emissions. Moreover, according to key agency officials, the absence of a national strategy has also deterred their agencies from addressing other important practical issues, such as resolving how stored CO2 would be treated in a future CO2 emissions trading plan.

Book Recent Technologies in Capture of CO2

Download or read book Recent Technologies in Capture of CO2 written by Rosa-Hilda Chavez and published by Bentham Science Publishers. This book was released on 2014-09-30 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Recent Technologies in the capture of CO2” provides a comprehensive summary on the latest technologies available to minimize the emission of CO2 from large point sources like fossil-fuel power plants or industrial facilities. This ebook also covers various techniques that could be developed to reduce the amount of CO2 released into the atmosphere. The contents of this book include chapters on oxy-fuel combustion in fluidized beds, gas separation membrane used in post-combustion capture, minimizing energy consumption in CO2 capture processes through process integration, characterization and application of structured packing for CO2 capture, calcium looping technology for CO2 capture and many more. Recent Technologies in capture of CO2 is a valuable resource for graduate students, process engineers and administrative staff looking for real-case analysis of pilot plants. This eBook brings together the research results and professional experiences of the most renowned work groups in the CO2 capture field.

Book Investigation of Thermal Integration in a Coal Fired Power Plant with MEA Post Combustion Carbon Capture

Download or read book Investigation of Thermal Integration in a Coal Fired Power Plant with MEA Post Combustion Carbon Capture written by Erony Whyte Martin and published by . This book was released on 2011 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: One option for capturing CO2 from pulverized coal power plants is to use a MEA scrubber, with the captured CO2 then being compressed to high pressure. Between them, the capture and compression processes will result in approximately 33% less net unit power. The compression process generates heat which can be recycled within the plant to reduce the energy penalty. This report describes the effect of compressor selection and thermal integration on heat rate. The power plant, MEA scrubber and compressors were modeled with Aspen Plus software and Ramgen, an inline and two integrally geared compressors and five thermal integration cases were evaluated.

Book CO2 Capture

Download or read book CO2 Capture written by Fabrice Lecomte and published by Editions TECHNIP. This book was released on 2010 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: CO2 capture and geological storage (CCS) is now recognised as being one of the pathways that can be implemented to reduce CO2 emissions and fight against global warming. But where, how and at what price can CO2 be captured? This book attempts to provide the answers to these questions, reviewing the state of the art of the technologies required. It presents the three main pathways considered in which the CO2 capture technologies are expected to be implemented, respectively: the post-combustion pathway, in which the CO2 contained in industrial flue gases is extracted; the oxy-combustion pathway, in which combustion is performed in oxygen to obtain flue gases with high CO2 concentration; and lastly the pre-combustion pathway, in which carbon is extracted from the initial fuel to generate hydrogen, whose combustion will produce only water vapour. The book introduces, for each pathway, the technologies currently available and those under development. It is intended for everyone wanting to gain a better understanding of the mechanisms implemented in CO2 capture operations, as well as the technological and economic challenges to be met to ensure that the costs generated by these operations are no longer an obstacle to their worldwide generalisation.Contents: 1. Why capture and store CO2? Global warming. How to reduce CO2 emissions. Main links of the CCS chain. 2. Where capture CO2? CO2 fixed emission sources worldwide. Fixed sources in France. CO2 capture potential in France. 3. Post-Combustion CO2 capture. Principles and stakes. Characteristics of post-combustion flue gases. Separation techniques potentially suitable for post-combustion CO2 capture. Technologies under development for post-combustion CO2 Capture. CO2 conditioning. Conclusion. 4. Oxy-combustion CO2 capture. Principles and stakes. Oxy-combustion. Chemical looping combustion. CO2 conditioning. Demonstrations. 5. Pre-combustion CO2 capture. Principles and stakes. Syngas production. Water-gas shift reaction. CO2 extraction. CO2 conditioning. Hydrogen combustion. Integrated power production processes with pre-combustion CO2 capture. 6. Capture and store CO2: at what cost? Calculation bases. CO2 capture costs. CO2 transport costs. CO2 storage costs. Trend in the cost of the CCS chain - Power production. Variability of CCS chain costs. Application to existing installations. Conclusion. Appendix.